Model Setting	Equilibrium Analysis	Find the Key Player	Discussion	References
000000	0000	000000	00000	

Who's Who in Networks. WANTED: The Key Player

Yu-Chihe Kuo¹

¹Department of Information Management, National Taiwan University

May 31, 2022

Motivation

- A network consists of several individuals linking to each other or not, and there may be some groups in a network.
- ▷ The dependence of individual outcomes on group behavior is often referred to as peer effects.
 - In standard peer effects models, this dependence is homogeneous across memebrs and corresponds to an average group influence.
 - As a decision-maker or policymaker, we may want to find the most influential player in the network to break or strengthen such effect.
- ▷ What if this intergroup externality is heterogeneous cross group members and varies accross individuals with their level of group exposure?

Literature Reviews

- The first related measure was proposed by Bonacich (1987), and some sociologists establish the network analysis Wasserman and Faust (1994) as well.
- However, the Bonacich centrality measure fails to internalize all the network payoff externalities agents exert on each other, whereas the intercentrality measure internalizes them all.
- This research extended the Bonacich centrality measure and propose a new centrality measure based on the planner's optimality (collective) perspectives instead of strategic (individual) considerations.

Model Setting	Equilibrium Analysis	Find the Key Player	Discussion	References

Outline

- 1. Model Setting
- 2. Equilibrium Analysis
- 3. Find the Key Player
- 4. Discussion

Model Setting ●○○○○○	Equilibrium Analysis	Find the Key Player	Discussion	References

1. Model Setting

- 2. Equilibrium Analysis
- 3. Find the Key Player
- 4. Discussion

Utility and the Game

- ▷ Each player $i = 1, \dots, n$ selects an effort $x_i \ge 0$ and obtains the bilinear utility $u_i(x_1, \dots, x_n) = \alpha_i x_i + \frac{1}{2} \sigma_{ii} x_i^2 + \sum_{j \ne i} \sigma_{ij} x_i x_j$, which is strictly concave in own effort, and the utility is linear-quadratic.
- ▷ Bilateral influences are captured by the cross-derivatives $\frac{\partial^2 u_i}{\partial x_i \partial x_j} = \sigma_{ij}$ and can be of either sign.
 - ▷ For example, if $\sigma_{ij} > 0$, an increase in *j*'s efforts triggers a upwards shift in *i*'s response, and we say *i* and *j*'s efforts are strategic complements from *i*'s perspective.
- ▷ Simplifying, we set $\alpha_i = \alpha > 0$, $\sigma_{ii} = \sigma$, and denote by $\Sigma \equiv [\sigma_{ij}]$ the square matrix of cross-effects.
- ▷ Moreover, we define $\underline{\sigma} \equiv \min\{\sigma_{ij} | i \neq j\}$ and $\overline{\sigma} \equiv \max\{\sigma_{ij} | i \neq j\}$ and assume that $\sigma < \min\{\underline{\sigma}, 0\}$.

Cross-effects

- ▷ The next step is to discuss how to capture the relative complementarity in efforts between (*i*, *j*).
 - ▷ There are some discussion based on the sign of $\underline{\sigma}$, and we skip it and use the result directly.
- ▷ Define $\gamma \equiv -\min{\{\underline{\sigma}, 0\}} \ge 0$ and $\lambda \equiv \overline{\sigma} + \gamma \ge 0$. ¹ and let $g_{ij} \equiv \frac{\sigma_{ij} + \gamma}{\lambda}$ for $i \neq j$ and $g_{ii} = 0$. ² Therefore, $0 \le g_{ij} \le 1$ is a parameter measuring the relationship in efforts within (i, j) from *i*'s perspective, and the matrix $G = [g_{ij}]$ interprets the adjacency matrix of the network.

¹In fact, $\lambda = 0$ has Lebesgue measure zero.

²The result is robust in the case $g_{ii} = 1$. This case is less economic intuitive said by the author.

Bilateral Influences

- ▷ Let $\sigma = -\beta \gamma$ for $\beta > 0$ satisfying the assumption of $\sigma < \min{\{\underline{\sigma}, 0\}}$ WLOG, and denote by *I* the identity matrix and *U* the matrix of ones, where both are $n \times n$ matrices, we can decompose the matrix Σ as $\Sigma = -\beta l \gamma U + \lambda G$.
 - ▷ Therefore, bilateral influences result from the combination of an individual effect by $-\beta I$, the global interaction effect by $-\gamma U$, and the local interaction effect by λG .
- ▷ We can rewrite the utility function following the decomposition of Σ as $u_i(x_1, \dots, x_n) = \alpha x_i \frac{1}{2}(\beta \gamma)x_i^2 \gamma \sum_{j=1}^n x_i x_j + \lambda \sum_{j=1}^n g_{ij}x_i x_j$ for all $i = 1, \dots, n$.

The Bonacich centrality measure

- Before moving to the equilibrium analysis, we define a network centrality measure extended by Bonacich centrality measure for the further use.
- ▷ Remind that the matrix G^k tracks the indirect connections in the network: g_{ij}^k measures the number of paths of length $k \ge 1$ in the network \mathcal{G} from *i* to *j*.
- ▷ Given a sufficiently small scalar $a \ge 0$, we define the matrix $M(\mathfrak{G}, a) = [l aG]^{-1} = \sum_{k=0}^{+\infty} a^k G^k$. *a* represents a decay factor to scale down the weight of long paths.
- ▷ The vector of Bonacich centrality in \mathcal{G} is $b(\mathcal{G}, a) = [l aG]^{-1} \cdot \mathbb{1}$, and the Bonacich centrality of node *i* is $b_i(\mathcal{G}, a) = \sum_{j=1}^n m_{ij}(\mathcal{G}, a)$.

The Bonacich centrality measure

▷ We can separate the Bonacich centrality into two parts: from *i* to *i* itself and of all the outer path from *i* to every other *j* ≠ *i*. That is, b_i(𝔅, a) = ∑_{j=1}ⁿ m_{ij}(𝔅, a) = m_{ii}(𝔅, a) + ∑_{j≠i} m_{ij}(𝔅, a).
▷ m_{ii}(𝔅, a) ≥ 1 by definition and thus b_i(𝔅, a) ≥ 1.

Model Setting	Equilibrium Analysis	Find the Key Player	Discussion	References

1. Model Setting

2. Equilibrium Analysis

3. Find the Key Player

4. Discussion

Nash Equilibrium

Recall that the utility function can be describe as

 $u_i(\mathbf{x}) = \alpha_i \mathbf{x}_i + \frac{1}{2} \Sigma \mathbf{x}^2$. A Nash equilibrium in pure strategies $\mathbf{x}^* \in \mathbb{R}^n_+$ is to solve $\frac{\partial u_i(\mathbf{x}^*)}{\partial \mathbf{x}_i} = 0$ and $\mathbf{x}^*_i > 0$, that is, $-\Sigma \cdot \mathbf{x}^* = [\beta \mathbf{l} + \gamma \mathbf{U} - \lambda \mathbf{G}] \cdot \mathbf{x}^* = \alpha \cdot \mathbb{1}$.

▷ Using the fact that $U \cdot x^* = x^* \cdot \mathbb{1}$ and define $\lambda^* \equiv \frac{\lambda}{\beta}$, the FOC reduces to $\beta[I - \lambda^* G] \cdot x^* = (\alpha - \gamma x^*) \cdot \mathbb{1}$.

Theorem 1: Let $\mu_1(G)$ be the largest eigenvalue of G, ³ the matrix $\beta[\mathbf{l} - \lambda^* G]$ is well-defined and nonnegative if and only if $\beta > \lambda \mu_1(G)$, thus the unique interior Nash equilibrium is given by $\mathbf{x}^*(\mathbf{\Sigma}) = \frac{\alpha}{\beta + \gamma b(\mathfrak{G}, \lambda^*)} b(\mathfrak{G}, \lambda^*).$

 $^{{}^{3}\}mu_{1}(G)$ is well-define and larger than 0 since all eigenvalues of a symmetric matrix G are real, and the diagnal of G is zero.

Parameters Analysis

- ▷ Given the unique Nash equilibrium $\mathbf{x}^*(\mathbf{\Sigma}) = \frac{\alpha}{\beta + \gamma b(\mathfrak{G}, \lambda^*)} b(\mathfrak{G}, \lambda^*)$, we want to analyze how three different effects influence the equilibrium.
 - ▷ If the matrix of cross-effects Σ reduces to λ *G*, that is,
 - $\beta=\gamma=0,$ there exists no Nash equilibrium.
 - ▷ If Σ reduces to $-\beta l \gamma U$, that is, $\lambda = 0$, the Nash equilibrium is unique.
- The existence and uniqueness of Nash equilibrium are proven by Debreu and Herstein (1953). We emphasize the economic meaning.
 My explanation: If the cross-effects will not be affected by your effort and the substitutability in efforts across all pairs of players , you may prefer doing nothing and result in an effort x_i = 0 to obtain a higher utility, which contradicts the condition of an interior Nash equilibrium .

Individual's Contribution to the Aggregate Equilibrium

- ▷ The Bonacich-Nash equilibrium expression also implies that each individual contributes to the aggregate equilibrium outcome in proportion to their network centrality: $x_i^*(\Sigma) = \frac{b_i(\Omega, \lambda^*)}{b(\Omega, \lambda^*)} x^*(\Sigma)$.
- This indicates that the intergroup externality is not an average influence but a weighted one heterogeneous across members.
 My explanation: An unbalanced influence across memebrs allows us to find the most significant player.

000000 0000 00000 00000	Model Setting	Equilibrium Analysis	Find the Key Player	Discussion	References
	000000	0000	00000	00000	

1. Model Setting

- 2. Equilibrium Analysis
- 3. Find the Key Player
- 4. Discussion

Identification Criterion

- After solving the Nash equilibrium and related issues, we go back to the main topic: how to find the key player in a network.
- ▷ The idea is: we want to reduce the player optimally to maximize the difference between the value of aggregate Nash equilibrium from this removal. Formally, we solve an optimization problem $\max\{x^*(\Sigma) x^*(\Sigma_{-i})\}.$

 \triangleright This is equivalent to solve min $\{x^*(\Sigma_{-i})|i=1,\cdots,n\}$.

▷ Let *i** be a solution to the optimization problem. We call *i** the key player, which means removing *i** from the initial network has the largest overall impact on the aggregate equilibrium level.

Model Setting
00000Equilibrium Analysis
0000Find the Key Player
00000Discussion
00000References
00000

New Measure: Intercentrality

- ▷ Remind that the Bonacich centrality measure only counts the number of paths stemming from player *i*, which doesn't include the contributions of player *i* toward other player $j \neq i$.
- ▷ Therefore, the author proposed the intercentrality

 $c_i(\mathfrak{G}, a) = \frac{b_i(\mathfrak{G}, a)^2}{m_{ii}(\mathfrak{G}, a)}$, to capture such combined centrality.

$$c_i(\mathfrak{G}, a) = \frac{b_i(\mathfrak{G}, a)^2}{m_{ii}(\mathfrak{G}, a)} = \frac{\left(\sum_{j=1}^n m_{ij}(\mathfrak{G}, a)\right)^2}{m_{ii}(\mathfrak{G}, a)}$$
$$= \frac{\left(m_{ii}(\mathfrak{G}, a) + \sum_{j \neq i} m_{ij}(\mathfrak{G}, a)\right)^2}{m_{ii}(\mathfrak{G}, a)}$$
$$= b_i(\mathfrak{G}, a) + \frac{\sum_{j \neq i} m_{ij}(\mathfrak{G}, a) \cdot b_i(\mathfrak{G}, a)}{m_{ii}(\mathfrak{G}, a)}$$

Intercentrality and the Key Player

- ▷ In fact, removing a player from a network has two effects:
 - ▷ Fewer players contribute to the aggregate activity level (direct effect).
 - ▷ The network topology is modified, which forces the remaining players to adopt different actions (indirect effect).
- ▷ Therefore, we want to catch the key play by using the intercentrality.
- **Theorem 2:** The key player *i*^{*} who solves the optimization problem $\min\{x^*(\Sigma_{-i})|i=1,\cdots,n\}$ has the highest intercentrality of parameter λ^* in \mathcal{G} , that is, $c_{i^*}(\mathcal{G}, \lambda^*) \ge c_{-i^*}(\mathcal{G}, \lambda^*)$.

Model Setting	Equilibrium Analysis	Find the Key Player	Discussion	References

Example

- ▷ For example, consider the following network *G*. Player 1 bridges together two groups, and removing player 1 disrupts the network.
- ▷ However, removing player 2 decreases maximally the total number of network links.

Model Setting	Equilibrium Analysis	Find the Key Player ○○○○○●	Discussion	References

Example

- The computational result shows that as the value of *a* (the decay factor of long paths) is low, player 2 has the highest Bonacich centrality and also is the key player; however, when *a* is high, player 2 is not the key player but player 1 is.
- By considering indirect effects, removing player 1 has the highest joint direct and indirect effect on aggregate outcome.

	a = 0.1		a = 0.1		<i>a</i> =	= 0.2
Player Type	b _i	c _i	b _i	c _i		
1	1.75	2.92	8.33	41.67*		
2	1.88*	3.28*	9.17*	40.33		
3	1.72	2.79	7.78	32.67		

Model Setting	Equilibrium Analysis	Find the Key Player	Discussion •0000	References

1. Model Setting

- 2. Equilibrium Analysis
- 3. Find the Key Player
- 4. Discussion

Utility Form

- ▷ There is a number of possible extension of the work.
- ▷ The first is that the analysis is restricted to linear-quadratic utility that capture linear externality in player's actions.
 - ▷ They use FOC to find the interior equilibrium and leads to the Bonacich-Nash linkage.
- ▷ Linear-quadratic utilities are commonly used in economic models.
- It can be extended to more general cases, such as non-linear externalities.

Planner's Objective

- ▷ In this research, the planner's objective function is the aggregate group outcome. Theorems and corollaries are based on it.
- ▷ If the planer's objective is to maximize welfare $W^*(\Sigma) = \sum_{i=1}^n u_i(\mathbf{x}^*(\Sigma)) = \frac{\beta + \gamma}{2\sum_{i=1}^n x_i^*(\Sigma)^2}$, the result of the key player is also possible in this case.

Group Targets

- ▷ This research characterizes a single-player target, but the idea of intercentrality measure can be generalized to a group index.
- The group target selection problem is not amenable to a sequential key player problem. In fact, optimal group targets belong to the maximization of submodular set functions, which cannot admit exact solutions.

Staged Games

- ▷ This method can be extended to solve a two-stage game.
 - ▷ In the first stage, players decide simultaneously to stay in the network \mathcal{G} or to drop out of it, then get their outside options and utilities.
 - In the second stage, the staying players play the network game on the resulting network.
 - A fun fact is that the authors themselves had solved the uniqueness of the second-stage Nash equilibrium and the closed-form expression in Calvó-Armengoi and Zenou (2004) and Calvó-Armengol and Jackson (2004).

Model Setting	Equilibrium Analysis	Find the Key Player	Discussion	References
000000	0000	000000	00000	

Bonacich, Phillip (1987) "Power and Centrality: A Family of Measures," *American Journal of Sociology*, 92 (5), 1170–1182, http://www.jstor.org/stable/2780000.

- Calvó-Armengoi, Antoni and Yves Zenou (2004) "Social Networks and Crime Decisions: The Role of Social Structure in Facilitating Delinquent Behavior," *International Economic Review*, 45 (3), 939–958, http://www.jstor.org/stable/3663642.
- Calvó-Armengol, Antoni and Matthew O. Jackson (2004) "The Effects of Social Networks on Employment and Inequality," *American Economic Review*, 94 (3), 426–454, 10.1257/0002828041464542.
- Debreu, Gerard and I. N. Herstein (1953) "Nonnegative Square Matrices," *Econometrica*, 21 (4), 597–607, http://www.jstor.org/stable/1907925.

Model Setting	Equilibrium Analysis	Find the Key Player	Discussion	References
000000	0000	000000	00000	

Wasserman, Stanley and Katherine Faust (1994) Social network analysis: Methods and applications, 8: Cambridge university press, http://scholar.google.com/scholar.bib?q=info: gET6m8icitMJ:scholar.google.com/&output=citation&hl= en&as_sdt=0,5&as_vis=1&ct=citation&cd=0.