Assignment **1**

Yu-Chieh Kuo B07611039†

†Department of Information Management, National Taiwan University

Problem 1

Let *T*(*i*) be the sum of the *i*-th row of the Pascal triangle, we have *T*(*i*) = 2^{i-1} . The proof by induction is shown as below.

In the base case, when $i = 1$, the sum of the first row is 1, which is equal to 2^{1-1} . Assume the sum of row *n* is 2^{n-1} , then the element of row $n + 1$ are each formed by adding two elements of row *n*, and each element of row *n* contributes to forming two elements of row *n* + 1. Thus, the sum of the *n* + 1 row is $2 \cdot 2^{n-1} = 2^n$ as acquired. By induction, we find the expression for the sum of the *i*-th row of the Pascal triangle.

Problem 2

In the base case, when $n = 0$, $H(2^0) = H(1) = 1 \ge 1$. Assume that $H(2^n) \ge 1 + \frac{2}{n}$ $\frac{2}{n}$ is true, when the case $n + 1$, we have

$$
H(2^{n+1}) = 1 + \frac{1}{2} + \dots + \frac{1}{2^n} + \frac{1}{2^n + 1} + \dots + \frac{1}{2^{n+1}}
$$

= $H(2^n) + \frac{1}{2^n + 1} + \dots + \frac{1}{2^{n+1}}$
 $\geq (1 + \frac{n}{2}) + \frac{1}{2^n + 1} + \dots + \frac{1}{2^{n+1}}$
 $\geq (1 + \frac{n}{2}) + 2^n \cdot \frac{1}{2^{n+1}}$
 $\geq (1 + \frac{n}{2}) + \frac{1}{2}$
 $\geq 1 + \frac{n+1}{2}.$

Since the case $n + 1$ still satisfies the inequality, therefore, we prove the Harmonic series inequality by induction.

Problem 3

Let $P(n)$ be the proposition to carry out the proof. $P(n)$ is true if positive integer *n* can be written as a sum of distinct numbers from this series and be false if not.

When $1 \le n \le 10$, $P(n)$ is true evidently. Assume $n = k > 10$ can be written as a sum of distinct numbers from this series, when $n = k + 1$, let a_i be the largest number in series and

be less than $k + 1$ simultaneously, that means $a_i < k + 1$. Also, notice that $a_i > k + 1 - a_i$ since if $a_i \leq k+1-a_i$, it implies $2a_i = a_{i+1} \leq k+1$ *i.e.* a_{i+1} the largest number in series and be less than $k + 1$ instead of a_i , contradicting to the assumption. Besides, $k > k + 1 - a_i$ implies $P(k + 1 - a_i)$ is true, which means $k + 1 - a_i$ can be written as a sum of distinct numbers from this series $a_{x_1} + a_{x_2} + ... + a_{x_j}$, and $a_i \notin \{a_{x_b} | b = 1, 2, \dots \}$. Therefore, $P(k + 1)$ is true.

By induction, we prove that any positive integer can be written as a sum of distinct numbers from this series.

Problem 4

When $n = 1$, $F(1) = 1$ and $G(1) = 1 + 1 = 2$, the assumption of $G(n) = F(n) - 1$ is trivially incorrect since *G*(1) = *F*(1) − 1. However, the question statement lacks of definition of *G*(1) and *G*(2). Suppose we define *G*(1) = *G*(2) = 0 to imply *G*(3) = 1 and so on, the assumption is still dissatisfied.

Therefore, the critical problem of this proof is the incorrect assumption.

Problem 5

5.(a)

Given $Max(\perp) = 0$, the function *Max* is defined as below

$$
Max(node(k, t_l, t_r)) = \begin{cases} k & \text{if } k \ge Max(t_l), Max(t_r) \\ Max(t_l) & \text{if } Max(t_l) > k, Max(t_r) \\ Max(t_r) & \text{if } Max(t_r) > k, Max(t_l). \end{cases}
$$

5.(b)

After requiring $Max(\perp) = -1$, the definition of *Max* is modified as

$$
Max(node(k, t_l, t_r)) = \begin{cases}\n-1 & \text{if node}(k, t_l, t_r) = \bot \\
k & \text{if } k \ge Max(t_l), Max(t_r) \\
Max(t_l) & \text{if } Max(t_l) > k, Max(t_r) \\
Max(t_r) & \text{if } Max(t_r) > k, Max(t_l).\n\end{cases}
$$