
Algorithms
National Taiwan University, Fall 2022

Assignment 2
Yu-Chieh Kuo B07611039†

†Department of Information Management, National Taiwan University

Problem 1

1.(a)

The redefinition is shown as below.

• The empty tree, denoted ⊥, is a binary search tree, storing no key value.

• If tl and tr are binary search tree, every key value (of descendants) in the nodes of tl is
smaller than k, and every key value (of descendants) in the nodes of tr is larger than
k, then node(k, tl, tr), where k ∈ Z and k ≥ 0, is also a binary search tree with the root
storing key value k.

1.(b)

To define AVL trees only, we need to introduce the additional auxiliary height and balance
function denoted as

H(node(k, tl, tr)) B

0 if tree is empty
max (H(tl),H(tr)) + 1 if tree is nonempty

B(node(k, tl, tr)) B H(tr) −H(tl),

where the height function H(node) calculates the height of a tree, and the balance function
B(node) determines the node’s balance level. A binary tree is an AVL tree if

B(node) ∈ {−1, 0, 1}

holds for all nodes in the tree. Therefore, we can write the definition of AVL tree formally as

• The empty tree, denoted ⊥, is an AVL tree, storing no key value.

• If tl and tr are binary search tree, every key value (of descendants) in the nodes of tl is
smaller than k, and every key value (of descendants) in the nodes of tr is larger than k;
moreover, B(node) ∈ {−1, 0, 1} holds for every node in the tree, then node(k, tl, tr), where
k ∈ Z and k ≥ 0, is an AVL tree with the root storing key value k.

Page 1 of 3



Algorithms: Assignment 2 Yu-Chieh Kuo

Problem 2

We begin with a simplified version by substituting log2k for ⌈log2k⌉ and substituting
positive integer k = 2i for any positive integer k, where i ≥ 1. In this version, the base case is
trivially satisfied since there exists Gray codes of length log2

2 = 1. Assume we can find Gray
code of length n − 1 for k = 2n−1, n ∈ N, as the inductive step k = 2n = 2 × 2n−1, then we just
need to add a bit and connect them together to result in the length of n = log2 2n. We denote
this proposition as Proposition 1 to ease note.

Next, we put the attention to the original statement. In base case, we set k = 2n−1, n > 1.
By the previous proof, we can get the Gray code of length log2 n when n = 2i, i > 0, and
the length keeps in log2 n = ⌈log2 k⌉ after deleting one code of them. In the inductive step,
we consider 2n−1 < k < 2n − 1. For every off k + 2, we can find the Gray code of length
⌈log2(k + 2)⌉ = n for k + 2 objects, which we just need to delete the first and the last one. We
denote this proposition as Proposition 2 to ease note.

To prove the Gray codes for the even values of k are closed, the base case for k = 2 is true by
Proposition 1. In the inductive step, we consider k = 2i, i > 1. By Proposition 2, we can find
an open Gray codes of length ⌈log2 k⌉ for odd numbers, then we can add an additional bit
and connect it. The procedure to prove the Gray codes for odd values of k are open remains
similar by considering the case k = 2i − 1, i > 1.

Problem 3

The height increases by one when the full binary tree creates a new root node to connect
the origin full binary tree. Given such property, we observe that the sum of the heights of all
the nodes in T is the sum of the sub-tree and the height of root. Denote the sum of the heights
h of all nodes in T by T(h), the base case holds since when h = 0, T(h) = 1 = 21+1 − 1 − 2. By
induction hypothesis to assume that the property holds for all h = n, in the case h = n + 1,

T(n + 1) = 2T(n) + (n + 1)
= 2 · (2n+1 − n − 2) + (n + 1)
= 2n+2 − 2(n + 1) − 2

Therefore, the heights of all the nodes in T = 2h+1 − h − 2 is proved by induction.

Problem 4

In the base case i.e. p = 3, q = 0, the polygon is a triangle and the corresponding area is
1×1

2 =
1
2 =

3
2 + 0 − 1. Assume the statement holds for all simple polygons, we then consider

the general condition for p ≥ 3, q ≥ 0, and we can divide the origin polygon into a triangle T
and a smaller polygon P′ with one edge connected. Let the number of lattice points on the
connected edge be c, we have

q = qP′ + qT + (c − 2)
p = pP′ + pT − 2(c − 2) − 2

Notice that c − 2 means we need to deduct the two exception endpoints on the edge. Re-
writing the above formula gives

qP′ + qT = q − (c − 2)
pP′ + pT = p + 2(c − 2) + 2

Page 2 of 3



Algorithms: Assignment 2 Yu-Chieh Kuo

Let the area of the origin polygon, the divided polygon and the corresponding divided
triangle are AP, AP′ and AT, separately, then we obtain

AP = AP′ + AT

= (qP′ +
pP′

2
− 1) + (qT +

pT

2
− 1)

= qP′ + qT +
pP′ + pT

2
− 2

= q − (c − 2) +
p + 2(c − 2) + 2

2
− 2

= q +
p
2
− 1

Therefore, if the statement is satisfied for polygons constructed by n triangles, it is also
satisfied for polygons constructed by n + 1 triangles. Consequently, the area of polygon is
p
2 + q − 1.

Problem 5

The loop invariant for the main loop is

Inv(last,A,n) = (1 ≤ last ≤ n) ∧ (∀last + 1 ≤ i ≤ n, indexo f Largest(A′, 1, i) = i)

Given an array A with the length of n and last = n, the array changes after the loop executes
by k steps, that is,

Inv(n − k,A′k,n)→ Inv(n − (k + 1),A′k+1,n),

where A′i represents a modified array after i steps in the loop.
To prove its correctness, we start with the base case for k = 0 and last = n.

Inv(n,A,n) = (1 ≤ n ≤ n) ∧ (∀n + 1 ≤ i ≤ n, indexo f Largest(A′, 1, i) = i)

is true for sure. Assume the inductive case is true for 1 < k ≤ n − 1, last = n − k, by the
inductive hypothesis of last = n − k + 1, we obtain

∀n − k + 2 ≤ i ≤ n, indexo f Largest(A′, 1, i) = i.

Moreover, the nature of selection sort gives that on the k-th iteration of the loop, we pick
the largest element between A′k[1] and A′k[nk + 1] to put in the (n − k + 1)-th position, says
A′k+1[n− k+ 1]. A′k+1[n− k+ 1], therefore, is larger than elements on its left side, which shows

indexo f Largest(A′k+1[n − k + 1], 1,n − k + 1) = n − k + 1 ⇐⇒ indexo f Largest(A′, 1, i) = i.

Hence, ∀last+1 ≤ i ≤ n, indexo f Largest(A′, 1, i) = i holds with last = n−k, and the correctness
of the loop invariant is proved.

Page 3 of 3


	Problem 1
	1.(a)
	1.(b)
	Problem 2
	Problem 3
	Problem 4
	Problem 5

