Algorithms
National Taiwan University, Fall 2022

ASSIGNMENT 2

Yu-Chieh Kuo B07611039"

"Department of Information Management, National Taiwan University

Problem 1
1.(a)

The redefinition is shown as below.
e The empty tree, denoted L, is a binary search tree, storing no key value.

e If t; and t, are binary search tree, every key value (of descendants) in the nodes of t, is
smaller than k, and every key value (of descendants) in the nodes of ¢, is larger than
k, then node(k, t;,t,), where k € Z and k > 0, is also a binary search tree with the root
storing key value k.

1.(b)

To define AVL trees only, we need to introduce the additional auxiliary height and balance
function denoted as

0 if tree is empty
7—{ d k/ t 7 tr =
(node(k, t;, t,)) {max (H(t), H(t) + 1 if tree is nonempty

B(node(k, t;,t,)) = H(t,)—Ht),

where the height function H(node) calculates the height of a tree, and the balance function
B(node) determines the node’s balance level. A binary tree is an AVL tree if

B(node) € {-1,0,1}
holds for all nodes in the tree. Therefore, we can write the definition of AVL tree formally as
e The empty tree, denoted L, is an AVL tree, storing no key value.

e If t; and ¢, are binary search tree, every key value (of descendants) in the nodes of ; is
smaller than k, and every key value (of descendants) in the nodes of ¢, is larger than k;
moreover, B(node) € {—1,0, 1} holds for every node in the tree, then node(k, t, t,), where
k€ Z and k > 0, is an AVL tree with the root storing key value k.

Page10f3



Algorithms: Assignment 2 Yu-Chieh Kuo

Problem 2

We begin with a simplified version by substituting log,k for [log,k] and substituting
positive integer k = 2’ for any positive integer k, where i > 1. In this version, the base case is
trivially satisfied since there exists Gray codes of length log; = 1. Assume we can find Gray
code of length n — 1 for k = 2", n € N, as the inductive step k = 2" = 2 X 2"71, then we just
need to add a bit and connect them together to result in the length of n = log, 2". We denote
this proposition as Proposition 1 to ease note.

Next, we put the attention to the original statement. In base case, we set k = 21 > 1.
By the previous proof, we can get the Gray code of length log,n when n = 2/, i > 0, and
the length keeps in log, n = [log, k] after deleting one code of them. In the inductive step,
we consider 2"' < k < 2" — 1. For every off k + 2, we can find the Gray code of length
[log,(k +2)] = n for k + 2 objects, which we just need to delete the first and the last one. We
denote this proposition as Proposition 2 to ease note.

To prove the Gray codes for the even values of k are closed, the base case for k = 2 is true by
Proposition 1. In the inductive step, we consider k = 2i, i > 1. By Proposition 2, we can find
an open Gray codes of length [log, k] for odd numbers, then we can add an additional bit
and connect it. The procedure to prove the Gray codes for odd values of k are open remains
similar by considering the case k =2i -1, i > 1.

Problem 3

The height increases by one when the full binary tree creates a new root node to connect
the origin full binary tree. Given such property, we observe that the sum of the heights of all
the nodes in T is the sum of the sub-tree and the height of root. Denote the sum of the heights
h of all nodes in T by T(h), the base case holds since when h = 0, T(h) =1 = 2!*! =1 - 2. By
induction hypothesis to assume that the property holds for all 1 = n, in the case h =n + 1,

Tn+1) = 2T(n)+(n+1)
= 2.2 -n-2)+(n+1)
= 2"2_2n+1)-2

Therefore, the heights of all the nodesin T = 2hl -2 s proved by induction.

Problem 4

In the base case i.e. p = 3, ¢ = 0, the polygon is a triangle and the corresponding area is
Kl =2 =2+0-1. Assume the statement holds for all simple polygons, we then consider
the general condition for p > 3, g > 0, and we can divide the origin polygon into a triangle T
and a smaller polygon P” with one edge connected. Let the number of lattice points on the

connected edge be c, we have

qg=qp +qr+(-2)
p=ppr+pr—2c—-2)-2

Notice that ¢ — 2 means we need to deduct the two exception endpoints on the edge. Re-
writing the above formula gives

qr +qr =q—(c—2)
ppr+pr=p+2c-2)+2

Page 2 of 3



Algorithms: Assignment 2 Yu-Chieh Kuo

Let the area of the origin polygon, the divided polygon and the corresponding divided
triangle are Ap, Apr and Ar, separately, then we obtain

Ap = Ap/ +AT

= (qp"i'%_l)'i'(QT‘sz_T_l)

= qp,+qT+pp/+pT—2
2(c-2)+2

= q—(c—2)+p+ (02 )+ -2

A

= q+2 1

Therefore, if the statement is satisfied for polygons constructed by n triangles, it is also
satisfied for polygons constructed by n + 1 triangles. Consequently, the area of polygon is
Etg-1.

2

Problem 5

The loop invariant for the main loop is
Inv(last, A, n) = (1 < last < n) A (Vlast + 1 <i < n, indexofLargest(A’,1,i) = i)

Given an array A with the length of n and last = n, the array changes after the loop executes
by k steps, that is,
Inv(n -k, A, n) — Inv(n — (k + 1), Ay, n),

k+17

where A’ represents a modified array after i steps in the loop.
To prove its correctness, we start with the base case for k = 0 and last = n.

Inv(n,A,n)=(1<n<n)ANn+1<i<n, indexofLargest(A’,1,1) = i)

is true for sure. Assume the inductive case is true for 1 < k < n —1, last = n — k, by the
inductive hypothesis of last = n — k + 1, we obtain

Vn—k+2<1i<n, indexofLargest(A’,1,i) = i.

Moreover, the nature of selection sort gives that on the k-th iteration of the loop, we pick
the largest element between A;[1] and Aj[nk + 1] to put in the (n — k + 1)-th position, says
Al [n—k+1]. A, [n—k+1], therefore, is larger than elements on its left side, which shows

indexofLargest(A, [n—k+1],1,n-k+1)=n-k+1 <= indexofLargest(A’,1,i)=1i.

Hence, Yiast+1 < i < n, indexofLargest(A’,1,1i) = i holds with last = n—k, and the correctness
of the loop invariant is proved.

Page 3 of 3



	Problem 1
	1.(a)
	1.(b)
	Problem 2
	Problem 3
	Problem 4
	Problem 5

