
Algorithms
National Taiwan University, Fall 2022

Assignment 3
Yu-Chieh Kuo B07611039†

†Department of Information Management, National Taiwan University

Problem 1

Given the theorem (f (n))c = o(a f (n)) for all c > 0, a > 1 and monotonically increasing f (n),
let f (n) = log2 n, c = a, and a = 2b, we obtain

(log2 n)a = o
(
(2b)log2 n

)
⇐⇒ (log2 n)a = o

(
nb log2 2

)
⇐⇒ (log2 n)a = o

(
nb

)
.

Problem 2

2.(a)

Given f (n) = n2

log n and g(n) = n(log n)2, we claim f (n) = Ω(g(n)) by testing limn→∞
g(n)
f (n) = 0:

lim
n→∞

g(n)
f (n)

= lim
n→∞

(log n)3

n

= lim
n→∞

3(log n)2

n
(By L’ Hopital’s Rule)

= lim
n→∞

6 log n
n

(By L’ Hopital’s Rule)

= lim
n→∞

6
n

= 0.

Since limn→∞
g(n)
f (n) = 0 ⇐⇒ g(n) = o(f (n)) implies f (n) = Ω(g(n)), and g(n) = o(f (n)) implies

f (n) , O(g(n)), we prove the claim.

Page 1 of 3

Algorithms: Assignment 3 Yu-Chieh Kuo

2.(b)

Given f (n) = n32n and g(n) = 3n, we claim f (n) = O(g(n)) by testing limn→∞
f (n)
g(n) = 0:

lim
n→∞

f (n)
g(n)

= lim
n→∞

n32n

3n

= lim
n→∞

n3

(3
2)n

= lim
n→∞

3n2

(3
2)n(ln 3

2)
(By L’ Hopital’s Rule)

= lim
n→∞

6n
(3

2)n(ln 3
2)2

(By L’ Hopital’s Rule)

= lim
n→∞

6
(3

2)n(ln 3
2)3

= 0.

Since limn→∞
f (n)
g(n) = 0 ⇐⇒ f (n) = o(g(n)) implies f (n) = O(g(n)) and f (n) , Ω(g(n)), we

prove the claim.

Problem 3

Given f (n) = O(g(n)), the definition of O() introduces that there exists a constant c and N
s.t. ∀ n ≥ N, f (n) ≤ cg(n). Taking the natural log to both sides of f (n) ≤ cg(n) implies

ln(f (n)) ≤ ln(c) + ln(g(n)) ∀ n ≥ N

⇐⇒ ln(f (n))
ln(g(n))

≤ ln(c) + ln(g(n))
ln(g(n))

∀ n ≥ N

⇐⇒ ln(f (n))
ln(g(n))

≤ ln(c)
ln(g(n))

+ 1 ∀ n ≥ N

⇐⇒ ln(f (n)) ≤
(

ln(c)
ln(g(n))

+ 1
)
· ln(g(n)) ∀ n ≥ N

⇐⇒ ln(f (n)) ≤ c′ ln(g(n)) Set c′ =
ln(c)

ln(g(N))
+ 1

=⇒ ln(f (n)) = O(ln(g(n)).

Note that the operations above is feasible since ln(·) is a strictly increasing function.
To verify 2 f (n) = O

(
2g(n)

)
, setting f (n) = 2 log2 n and g(n) = log2 n satisfying f (n) = O(g(n))

implies
22 log2 n = O

(
2log2 n

)
⇐⇒ n2 = O(n),

which is a contradiction. Therefore, 2 f (n) = O
(
2g(n)

)
is a false statement.

Problem 4

The inequalities

T(n) ≤ cn and 2T
(n

2

)
+ 1 ≤ cn

Page 2 of 3

Algorithms: Assignment 3 Yu-Chieh Kuo

implies

T
(n

2

)
≤ c · n

2
and 2T

(n
2

)
+ 1 ≤ c · n

2
+ 1;

however, the inequalities above cannot imply cn ≥ 2c
(

n
2

)
+1, which is an incorrect statement.

Next, as the recurrence relation satisfies the form of T(n) = aT
(

n
b

)
+ O(nk), we obtain

T(n) = O(nlog2 2) = O(n) by applying the master theorem.

Problem 5

We use the generating function G(z) =
∑∞

n=1 anzn−1 and observe that the recurrence relation
can be represented as the form Tn = Tn−1 + 2Tn−2. Additionally, the recurrence under such
scenario is

G(z) = T1 + T2z + T3z2 + · · · .
Multiplying both sides of the recurrence by −z and −2z2 and getting summation gives the
equation

(1 − z − 2z2)G(z) = 1 + 2z ⇐⇒ G(z) =
1 + 2z

(1 + z)(1 − 2z)
=

4
3
· 1

1 − 2z
− 1

3
· 1

1 + z
,

which implies the recurrence relation T(n) = 2n + (−1)n.

Page 3 of 3

https://en.wikipedia.org/wiki/Master_theorem_(analysis_of_algorithms)

	Problem 1
	Problem 2
	2.(a)
	2.(b)
	Problem 3
	Problem 4
	Problem 5

