Algorithms
National Taiwan University, Fall 2022

ASSIGNMENT 4

Yu-Chieh Kuo B07611039"

"Department of Information Management, National Taiwan University

Problem 1

Let K be the size of the knapsack, S[i] be the size of the i-th item, and P(n, K) be the
solution with the number of items n and the size of the knapsack K. The algorithm can be
rewrite as Algorithm 1.

Algorithm 1 A modified kanpsack problem using the belong flag

1: function MopbiriepKnarsack(K,S,P)
2: k = K, Solution := @

3 fori:=n...1do
4 if P[i, k].exist = false then
5: return 0
6: end if
7 if P[i, k].belong = true then
8 Solution « S[i]
9: k = K — S[i]
10: end if
11: end for
12: if k # 0 then
13: return 0
14: end if
15: return Solution

16: end function

Problem 2

Denoting the solution checking P[i — 1, j].exist first by solA, and the solution checking
Pli — 1,j — kjl.exist first by solB, we state solA > solB where the symbol > represents the
performance relationship. A > B indicates the algorithm A has a better performance than B.
The performance relationship > satisfies the completeness and the transitivity.

Adopting solB might require additional if — else conditions to complete the algorithm.
In the iteration process, solB checks whether k — S[i] > 0 then P[i,k — S[i]].exist. If both
examinations fails, the algorithm finally checks P[i — 1, k].exist. However, there might be
the more or even repeated procedures, which leads to be more time-consuming to this
modification. A rough procedure is described in Algorithm 2.

Page 1 of 4



Algorithms: Assignment 4 Yu-Chieh Kuo

Algorithm 2 Partial steps in the modified kanpsack

1: function PARTIALKNAPSACKSTEP(S,K)
2: In the double for loop

3: if k — S[i] = 0 then
4: if P[i, k — S[i]].exist then
5: if P[i, k — S[i]].belong then
6: Do something. Might be repeated and more steps.
7: else if P[i — 1, k].exist then
8: Do something. Might be repeated and more steps.
9: end if
10: end if
11: else if P[i — 1, k].exist then
12: Do something
13: end if

14: end function

Problem 3

Given a set S of n item where the i-th item has an interger size S[i] and an integer K,
to solve a variation of the knapsack problem where each item has an unlimited supply, the
knapsack algorithm can be represented as Algorithm 3.

Problem 4

Here I slightly modify the description in the assignment since it might be vague in the
usage of set. Given the integers x1,--- ,x, and S = Y1 x;, we denote X with the size n by the
setof x;, i = 1...n, where X[j] is the j-th value of X.

Following the algorithm we proposed in Algorithm 3, the algorithm to partition the set
into two subsets of equal sum is described as Algorithm 4.

Problem 5

Without recursive steps, we can also design an algorithm to solve the Hanoi Puzzle
problem. We define an auxiliary function move(X, Y) to move disks between two legs X, Y
and print this move. The algorithm is described as Algorithm 5.

Page 2 of 4



Algorithms: Assignment 4

Yu-Chieh Kuo

Algorithm 3 A modified unlimited knapsack problem

1: function UNLiMITEDKNAPSACK(S,K)

2:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:

P[0, 0].extst := True
P[0, 0].belong =0
fork:=1...Kdo
P[0, k].exist := False
end for
fori:=1...ndo
fork:=0...Kdo
P[i, k].exist := False
if P[i — 1, k].exist = True then
Pli, k].exist := True
P[i, k].belong =0
else if k — S[i] > 0 then
if P[i, k — S[i]].exist = True then
Pli, k].exist := True
Pli, k].belong = P[i, k — S[i]].belong + 1
end if
end if
end for
end for
return P

22: end function

Algorithm 4 Equal-sum subsets partition

1: function EQUuALSUMSUBSETPARTITION(S,X)

2:

10:
11:
12:
13:
14:
15:

P, partitionA, partitionB = @
if S mod 2 =1 then
return False
else
halfS = 3
P « UnlimitedKnapsack(X, hal fS)
if P[n, hal fS].exist = True then
partitionA « elements in P.belong = True
partitionB « elements in P.belong = False
else
return False
end if
end if
return partitionA, partitionB

16: end function

Page 3 of 4



Algorithms: Assignment 4 Yu-Chieh Kuo

Algorithm 5 Hanoi puzzle

1: function NoNRecursizeHaNo1PuzzLe(n,A,B,C)
2: step =0

3: while step < 2" -1 do
4: if n mod 2 # 0 then
5: move(A, C)
6: move(A, B)
7: move(C, B)
8: else
9: move(A, B)
10: move(A, C)
11: move(C, B)
12: end if
13: step := step + 1
14: end while

15: end function

Page 4 of 4



	Problem 1
	Problem 2
	Problem 3
	Problem 4
	Problem 5

