Assignment 4

Yu-Chieh Kuo B07611039⁺

⁺Department of Information Management, National Taiwan University

Problem 1

Let *K* be the size of the knapsack, S[i] be the size of the *i*-th item, and P(n, K) be the solution with the number of items *n* and the size of the knapsack *K*. The algorithm can be rewrite as Algorithm 1.

Algorithm 1 A modified kanpsack problem using the belong flag 1: **function ModifiedKnapsack**(*K*,*S*,*P*) 2: k := K, Solution $:= \emptyset$ 3: **for** $i \coloneqq n \dots 1$ **do if** P[i,k].exist = false **then** 4: return 0 5: end if 6: **if** P[i, k].belong = true **then** 7: Solution $\leftarrow S[i]$ 8: $k \coloneqq K - S[i]$ 9: 10: end if end for 11: if $k \neq 0$ then 12: return 0 13: end if 14: return Solution 15. 16: end function

Problem 2

Denoting the solution checking P[i - 1, j].exist first by solA, and the solution checking $P[i - 1, j - k_j]$.exist first by solB, we state solA > solB where the symbol > represents the performance relationship. A > B indicates the algorithm A has a better performance than B. The performance relationship > satisfies the completeness and the transitivity.

Adopting *solB* might require additional if - else conditions to complete the algorithm. In the iteration process, *solB* checks whether $k - S[i] \ge 0$ then P[i, k - S[i]].exist. If both examinations fails, the algorithm finally checks P[i - 1, k].exist. However, there might be the more or even repeated procedures, which leads to be more time-consuming to this modification. A rough procedure is described in Algorithm 2.

Algorithm 2 Partial steps in the modified kanpsack		
1: function PartialKnapsackStep(S,K)		
2: In the double <i>for</i> loop		
3: if $k - S[i] \ge 0$ then		
4: if $P[i, k - S[i]]$.exist then		
5: if $P[i, k - S[i]]$.belong then		
6: Do something. Might be repeated and more steps.		
7: else if $P[i-1,k]$.exist then		
8: Do something. Might be repeated and more steps.		
9: end if		
10: end if		
11: else if $P[i-1,k]$.exist then		
12: Do something		
13: end if		
14: end function		

Problem 3

Given a set *S* of *n* item where the *i*-th item has an interger size S[i] and an integer *K*, to solve a variation of the knapsack problem where each item has an unlimited supply, the knapsack algorithm can be represented as Algorithm 3.

Problem 4

Here I slightly modify the description in the assignment since it might be vague in the usage of *set*. Given the integers x_1, \dots, x_n and $S = \sum_{i=1}^n x_i$, we denote X with the size *n* by the set of x_i , $i = 1 \dots n$, where X[j] is the *j*-th value of X.

Following the algorithm we proposed in Algorithm 3, the algorithm to partition the set into two subsets of equal sum is described as Algorithm 4.

Problem 5

Without recursive steps, we can also design an algorithm to solve the Hanoi Puzzle problem. We define an auxiliary function move(X, Y) to move disks between two legs X, Y and print this move. The algorithm is described as Algorithm 5.

Algorithm 3 A modified unlimited knapsack problem

```
1: function UNLIMITEDKNAPSACK(S,K)
        P[0,0].extst := True
 2:
 3:
        P[0,0].belong := 0
        for k \coloneqq 1 \dots K do
 4:
            P[0,k].exist := False
 5:
        end for
 6:
        for i \coloneqq 1 \dots n do
 7:
            for k \coloneqq 0 \dots K do
 8:
                P[i,k].exist := False
 9:
                if P[i-1,k].exist = True then
10:
                    P[i,k].exist := True
11:
                    P[i,k].belong := 0
12:
                else if k - S[i] \ge 0 then
13:
14:
                    if P[i, k - S[i]].exist = True then
                        P[i,k].exist := True
15:
                        P[i,k].belong := P[i,k-S[i]].belong + 1
16:
17:
                    end if
                end if
18:
            end for
19:
        end for
20:
        return P
21:
22: end function
```

Algorithm 4 Equal-sum subsets partition

```
1: function EqualSumSubsetPartition(S,X)
 2:
       P, partitionA, partitionB := \emptyset
       if S mod 2 = 1 then
 3:
           return False
 4:
       else
 5:
           halfS := \frac{S}{2}
 6:
           P \leftarrow UnlimitedKnapsack(X, halfS)
 7:
           if P[n, hal fS].exist = True then
 8:
 9:
               partitionA ← elements in P.belong = True
               partitionB ← elements in P.belong = False
10:
           else
11:
               return False
12:
           end if
13:
       end if
14:
       return partitionA, partitionB
15:
16: end function
```

Algorithm 5 Hanoi puzzle

1:	function NonRecursizeHanoiPuzzle(<i>n</i> , <i>A</i> , <i>B</i> , <i>C</i>)
2:	step := 0
3:	while step $< 2^n - 1$ do
4:	if $n \mod 2 \neq 0$ then
5:	move(A, C)
6:	move(A, B)
7:	move(C, B)
8:	else
9:	move(A, B)
10:	move(A, C)
11:	move(C, B)
12:	end if
13:	$step \coloneqq step + 1$
14:	end while
15:	end function