
Algorithms
National Taiwan University, Fall 2022

Assignment 4
Yu-Chieh Kuo B07611039†

†Department of Information Management, National Taiwan University

Problem 1

Let K be the size of the knapsack, S[i] be the size of the i-th item, and P(n,K) be the
solution with the number of items n and the size of the knapsack K. The algorithm can be
rewrite as Algorithm 1.

Algorithm 1 A modified kanpsack problem using the belong flag
1: function ModifiedKnapsack(K,S,P)
2: k B K, Solution B ∅
3: for i B n . . . 1 do
4: if P[i, k].exist = f alse then
5: return 0
6: end if
7: if P[i, k].belong = true then
8: Solution← S[i]
9: k B K − S[i]

10: end if
11: end for
12: if k , 0 then
13: return 0
14: end if
15: return Solution
16: end function

Problem 2

Denoting the solution checking P[i − 1, j].exist first by solA, and the solution checking
P[i − 1, j − k j].exist first by solB, we state solA ≻ solB where the symbol ≻ represents the
performance relationship. A ≻ B indicates the algorithm A has a better performance than B.
The performance relationship ≻ satisfies the completeness and the transitivity.

Adopting solB might require additional i f − else conditions to complete the algorithm.
In the iteration process, solB checks whether k − S[i] ≥ 0 then P[i, k − S[i]].exist. If both
examinations fails, the algorithm finally checks P[i − 1, k].exist. However, there might be
the more or even repeated procedures, which leads to be more time-consuming to this
modification. A rough procedure is described in Algorithm 2.

Page 1 of 4

Algorithms: Assignment 4 Yu-Chieh Kuo

Algorithm 2 Partial steps in the modified kanpsack
1: function PartialKnapsackStep(S,K)
2: In the double f or loop
3: if k − S[i] ≥ 0 then
4: if P[i, k − S[i]].exist then
5: if P[i, k − S[i]].belong then
6: Do something. Might be repeated and more steps.
7: else if P[i − 1, k].exist then
8: Do something. Might be repeated and more steps.
9: end if

10: end if
11: else if P[i − 1, k].exist then
12: Do something
13: end if
14: end function

Problem 3

Given a set S of n item where the i-th item has an interger size S[i] and an integer K,
to solve a variation of the knapsack problem where each item has an unlimited supply, the
knapsack algorithm can be represented as Algorithm 3.

Problem 4

Here I slightly modify the description in the assignment since it might be vague in the
usage of set. Given the integers x1, · · · , xn and S =

∑n
i=1 xi, we denote X with the size n by the

set of xi, i = 1 . . . n, where X[j] is the j-th value of X.
Following the algorithm we proposed in Algorithm 3, the algorithm to partition the set

into two subsets of equal sum is described as Algorithm 4.

Problem 5

Without recursive steps, we can also design an algorithm to solve the Hanoi Puzzle
problem. We define an auxiliary function move(X,Y) to move disks between two legs X,Y
and print this move. The algorithm is described as Algorithm 5.

Page 2 of 4

Algorithms: Assignment 4 Yu-Chieh Kuo

Algorithm 3 A modified unlimited knapsack problem
1: function UnlimitedKnapsack(S,K)
2: P[0, 0].extst B True
3: P[0, 0].belong B 0
4: for k B 1 . . .K do
5: P[0, k].exist B False
6: end for
7: for i B 1 . . . n do
8: for k B 0 . . .K do
9: P[i, k].exist B False

10: if P[i − 1, k].exist = True then
11: P[i, k].exist B True
12: P[i, k].belong B 0
13: else if k − S[i] ≥ 0 then
14: if P[i, k − S[i]].exist = True then
15: P[i, k].exist B True
16: P[i, k].belong B P[i, k − S[i]].belong + 1
17: end if
18: end if
19: end for
20: end for
21: return P
22: end function

Algorithm 4 Equal-sum subsets partition
1: function EqualSumSubsetPartition(S,X)
2: P, partitionA, partitionB B ∅
3: if S mod 2 = 1 then
4: return False
5: else
6: hal f S B S

2
7: P← UnlimitedKnapsack(X, hal f S)
8: if P[n, hal f S].exist = True then
9: partitionA← elements in P.belong = True

10: partitionB← elements in P.belong = False
11: else
12: return False
13: end if
14: end if
15: return partitionA, partitionB
16: end function

Page 3 of 4

Algorithms: Assignment 4 Yu-Chieh Kuo

Algorithm 5 Hanoi puzzle
1: function NonRecursizeHanoiPuzzle(n,A,B,C)
2: step B 0
3: while step < 2n − 1 do
4: if n mod 2 , 0 then
5: move(A,C)
6: move(A,B)
7: move(C,B)
8: else
9: move(A,B)

10: move(A,C)
11: move(C,B)
12: end if
13: step B step + 1
14: end while
15: end function

Page 4 of 4

	Problem 1
	Problem 2
	Problem 3
	Problem 4
	Problem 5

