Algorithms
National Taiwan University, Fall 2022

ASSIGNMENT 5
Yu-Chieh Kuo B07611039%

"Department of Information Management, National Taiwan University

Problem: Swap Space

Online Judge Testing

I tested my program on UVa Online Judge, an online automated judge system hosted by
University of Valladolid, and received Accepted (see Fig. 1) to verify the correctness of my
program. ' The compiling environment is C++11 5.3.0, with compiler options -1m -lcrypt
-02 -std=c++11 -pipe -DONLINE_JUDGE.

Run

Time Submission Date

Problem Verdict Language

2022-10-14

27905985 1747 Swap Space Accepted C++11 0.670 14:37:38

Figure 1: Online judge submission record

Algorithm Design

To better illustrate the algorithm, I define a few auxiliary variables to ease note. Denote
di (ci1, ciz) by the i-th hard driver with the original capacity c¢; and the reformatted capacity
cp,and D = {dy, dy, - - -, d,} by the set of the given n hard drivers.

Capacity and Category

First I observe that the reformation might lead to both an increasing, identical, or decreas-
ing capacity. Intuitively, it’s better to start with hard drivers with increasing capacities after
the reformation to create more vacant space for the reformation. Hence, we can separate
hard drivers satisfying c;; < ¢ into the increasing cluster C; and the remaining into the
decreasing cluster Cp. As a side note, D = C; U Cp.

Reformation Order

Next task is to determine the order to reformat hard drivers. Here I simply adopt the
greedy algorithm; that is, start from the hard driver with the smallest original capacity in
the increasing cluster since it requires the least space to start. Thus, the order relationship
> for the increasing cluster C; should follow the following properties:

!T genuinely thank my friend Andrew Shen (who does not enroll in this course) for his tremendous help of
this assignment.

Page1of5

https://onlinejudge.org

Algorithms: Assignment 5 Yu-Chieh Kuo

1. d; >| d; represents the hard driver i is reformatted earlier than j, Vd;, d; € C;.
2. di >1 d]' satisfies cn < Ci1 V {Cﬂ =Ci N Cpp > Cjz}-
3. >y satisfies the completeness and transitivity.

Similar properties with proper modification can be imposed on the order relationship >p for
the decreasing cluster Cp:

1. d; >p d; represents the hard driver i is reformatted earlier than j, ¥d;, d; € Cp.
2. d; >p d]‘ satisfies ¢, > Cip V {cin = Cio N Ci1 > le}.
3. >p satisfies the completeness and transitivity.

We denote Cr and C¥ by the sorted clusters, where f., : C; - Cfand f., : Cp — C5.

Reformation

After clustering and ordering hard drivers, we then initiate the reformation by C¥. The
initial vacant capacity is 0. When iterating the sequence of C} to reformat hard drivers, if the
vacant capacity is not adequately large to complete reformation, we then purchase the exact
size of extra storage ¢, € IN, where k denotes the k-th purchase. Each iteration in C} generates
the additional vacant capacity. We then iterate the sequence of C} after the completion of
Cr with a positive vacant capacity size. Identically, we then purchase the exact size of extra
storage if the vacant capacity is not large enough to complete reformation. Consequently,
the minimized size of extra storage purchased is derived by), &x.

Complexity Analysis

Given n hard drivers as input, I then analyze the complexity of this algorithm to examine
the efficiency.

Categorize: To separate the input O into C; and Cp, the traverse of all input data is necessary.
Hence, the complexity is © (n).

Sort: From the C++11/14 standard, std: :sort is guaranteed to have O (nlog 1) on average.
Therefore, to sort C; and Cp requires © (1 logn).

Reformat: Reformatting all hard drivers in O requires n step. That is, the time complexity
is © (n).

As a consequence, the overall complexity of the algorithm is

O 1)+ 0O (nlogn)+0O(n) € ®(nlogn).

Code Enclosure

#include <iostream>
#include <vector>
#include <algorithm>
#include <ctime>

Page 2 of 5

https://en.cppreference.com/w/cpp/algorithm/sort

Algorithms: Assignment 5 Yu-Chieh Kuo

using namespace std;
#define NDEBUG

class Uval747
{
public:
UVal747(const vector< pair<int, int> > &drive_capacity):
— drive_capacity(drive_capacity)
{
#ifndef NDEBUG
cout << "Drive Capacity: \n";
for(size_t i = 0;i < drive_capacity.size(); ++i)
{
cout << drive_capacity[i].first << " " << drive_capacity[i].second <<
— endl;
}
cout << "Drive Capacity --END--\n";
#endif //NDEBUG
}
long long int get_minimum_extra_capacity(Q)
{
extra_capacity = 0;
free_capacity = 0;
classify_dcQ;
sort_dc_increase(Q);
sort_dc_decrease();
#ifndef NDEBUG
print_dc_ptr(dc_increase_ptr);
print_dc_ptr(dc_decrease_ptr);
#endif //NDEBUG
calc_extra_capacity(dc_increase_ptr);
calc_extra_capacity(dc_decrease_ptr);
return extra_capacity;
}
private:
const vector< pair<int, int> > &drive_capacity;
vector< pair<int, int> const® > dc_increase_ptr, dc_decrease_ptr; // increase
— include equal
long long int extra_capacity, free_capacity;
void classify_dc(Q

{
for(size_t i = 0;i < drive_capacity.size(); ++i)
{
if(drive_capacity[i].first > drive_capacity[i].second)
dc_decrease_ptr.push_back(&drive_capacity[i]);
else
dc_increase_ptr.push_back(&drive_capacity[i]);
}

Page 3 of 5

Algorithms: Assignment 5 Yu-Chieh Kuo

}
void sort_dc_increase()
{
sort(dc_increase_ptr.begin(),
dc_increase_ptr.end(),
[this] (const pair<int, int>* const a, const pair<int, int>* const
< b)
{
if(a->first == b->first) return a->second > b->second;
else return a->first < b->first;
B;
}
void sort_dc_decrease()
{
sort(dc_decrease_ptr.begin(Q),
dc_decrease_ptr.end(),
[this] (const pair<int, int>* const a, const pair<int, int>* const
< b)
{
if(a->second == b->second) return a->first > b->first;
else return a->second > b->second;
//if(a->first == b->first) return a->second < b->second;
//else return a->first > b->first;
D;
}

void calc_extra_capacity(const vector< pair<int, int> const* > & dc_ptr)

{

for(size_t i = 0;i < dc_ptr.size(Q); ++i)

{
if(dc_ptr[i]->first > free_capacity)
{
extra_capacity += dc_ptr[i]->first - free_capacity;
free_capacity += dc_ptr[i]->first - free_capacity;
}

free_capacity -= dc_ptr[i]->first;
free_capacity += dc_ptr[i]->second;
#1ifndef NDEBUG

AAT cout << "extra: " << extra_capacity << " free: " << free_capacity << endl;
#endif //NDEBUG
}
}

#ifndef NDEBUG
void print_dc_ptr(const vector< pair<int, int> const* > & dc_ptr)
{
cout << "Drive Capacity: \n";
for(size_t i = 0;i < dc_ptr.size(Q); ++i)
{

non

cout << dc_ptr[i]->first << << dc_ptr[i]->second << endl;

}

cout << "Drive Capacity --END--\n";

Page 4 of 5

Algorithms: Assignment 5

Yu-Chieh Kuo

#endif //NDEBUG
};

int main(int argc, char* argv[])
{
// ios::sync_with_stdio(false);

// cin.tie(0);

int t;

while(cin >> t)

{
vector< pair<int, int> > drive_capacity;
while(t--)
{

int drive_capacity_old, drive_capacity_new;

cin >> drive_capacity_old >> drive_capacity_new;

drive_capacity.push_back(make_pair(drive_capacity_old,
— drive_capacity_new));

}

UVal747 uva_1747(drive_capacity);
cout << uva_1747.get_minimum_extra_capacity() << endl;

clog << "Time used = " << (double)clock() / CLOCKS_PER_SEC << endl;
return 0;

Page 5 of 5

