
Algorithms
National Taiwan University, Fall 2022

Assignment 6
Yu-Chieh Kuo B07611039†

†Department of Information Management, National Taiwan University

Problem 1

I do not draw diagrams by tikz for convenience and save time since I am sort of busy,
so I draw them by iPad and display them as Fig. 1 and 2.

Figure 1: The union diagram.

Figure 2: The union diagram after balancing and path compression.

Page 1 of 3

Algorithms: Assignment 6 Yu-Chieh Kuo

Problem 2

The code would be incorrect, if just that change is made. Consider an array with two
numbers 7 and 9, says X[7, 9]. Suppose we implement the binary search to find out whether
6 is in X. The execution will set Middle to

⌊
Le f t+Right

2

⌋
= 1 Since 6 < 7 = X[1] = X[Middle], the

algorithm invokes Find(6, 1, 0), which will result in an access to X[0], an erroreous behavior.
To modify the the code, it can be add an if statement before invoking the Find function

(See line 10 to 14 in Algorithm 1).

Algorithm 1 Corrected Binary Search
1: function CorrectedBinarySearch(z, Left, Right)
2: if Le f t = Right then
3: if X[Le f t] = z then
4: Find B Le f t
5: else
6: Find B 0
7: end if
8: else
9: Middle B

⌈
Le f t+Right

2

⌉
10: if z < X[Middle] then
11: if Middle ≤ 0 then
12: Stop the algorithm and print not found
13: else
14: Find B Find(z,Le f t,Middle − 1)
15: end if
16: else
17: Find B Find(z,Middle,Right)
18: end if
19: end if
20: end function

Problem 3

We have already known that the sum of the heights of all nodes in a full binary tree of
height h is 2h+1 − h − 2. Let G(n) denote the sum of the heights of all nodes in a complete
binary tree with n nodes. For a full binary tree (a special case of complete binary trees) with
n = 2h+1−1 nodes where h is the height of the tree, we already know that G(n) = 2h+1−(h+2) =
n − (h + 1) ≤ n − 1. Given this knowledge, we prove the general case of arbitrary complete
binary trees by induction.

For base case (n = {1, 2}): When n = 1, the tree is the smallest full binary tree with one
single node whose height is 0. Hence, G(n) = 0 ≤ 1 − 1 = n − 1. When n = 2,the tree has one
additional node as the left child of the root. The height of the root is 1, while that of its left
child is 0. Consequently, G(n) = 1 ≤ 2 − 1 = n − 1.

For inductive step (n > 2): If n happens to be equal to 2h+11 for some h ≥ 1, i.e. the tree is
full, then we are done. Note that this covers the case of n = 3 = 21+1 − 1. On the other hand,
suppose 2h+1− 1 < n < 2h+2− 1(h ≥ 1) i.e. the tree is a proper complete binary tree with height

Page 2 of 3

Algorithms: Assignment 6 Yu-Chieh Kuo

h + 1 ≥ 2. We observe that at least one of the two subtrees of the root is full, while the other
is complete (possibly full). There are three cases remaining to consider and discuss.

1. The left subtree is full with n1 nodes and the right one is complete but not full with n2

nodes (such that n1 + n2 + 1 = n). In this case, both subtrees much be of height h and
n1 = 2h+1 − 1. From the special case of full binary trees and the induction hypothesis,
G(n1) = 2h+1 − (h + 2) = n1 − (h + 1) and G(n2) ≤ n2 − 1. G(n) = G(n1) + G(n2) + (h + 1) ≤
(n1 − (h + 1)) + (n2 − 1) + (h + 1) = (n1 + n2 + 1) − 2 ≤ n − 1.

2. The left subtree is full with n1 nodes and the right one is also full with n2 nodes.
In this case, the left subtree much be of height h and n1 = 2h+1 − 1, while the right
subtree much be of height h − 1 and n2 = 2h − 1. From the special case of full binary
trees, G(n1) = 2h+1 − (h + 2) = n1 − (h + 1) and G(n2) = 2h − (h + 1) = n2 − h. G(n) =
G(n1)+G(n2)+ (h+ 1) ≤ (n1 − (h+ 1))+ (n2 − h)+ (h+ 1) = (n1 + n2 + 1)− (h+ 1) ≤ n− 1.

3. The left subtree is complete but not full with n1 nodes and the right one is full with
n2 nodes. In this case, the left subtree much be of height h, while the right subtree
much be of height h − 1 and n2 = 2h − 1. From the induction hypothesis and the
special case of full binary trees, G(n1) ≤ n1 − 1 and G(n2) = 2h − (h + 1) = n2 − h.
G(n) = G(n1) + G(n2) + (h + 1) ≤ (n1 − 1) + (n2 − h) + (h + 1) = (n1 + n2 + 1) − 1 = n − 1.

Problem 4

Algorithm 2 Modified KMP
1: function ModifiedKMP(B,m)
2: for i B 3 ∼ m do
3: j B next[i]
4: while j > 0 & B[i] = B[j + 1] do
5: j B next[j + 1]
6: end while
7: next[i] B j
8: end for
9: end function

The corresponding consequences from Algorithm 2 alter to {−1, 0, 0, 1, 0, 0, 3, 0, 1}.

Problem 5

The cost matrix is computed as

C[3, 4] = min


C[2, 4] + 1
C[3, 3] + 1
C[2, 3]

 = 2.

Page 3 of 3

	Problem 1
	Problem 2
	Problem 3
	Problem 4
	Problem 5

