
Algorithms
National Taiwan University, Fall 2022

Assignment 7
Yu-Chieh Kuo B07611039†

†Department of Information Management, National Taiwan University

Problem 1

Algorithm 1 Find Eulerian Circuit
1: function Eulerian(v, G)
2: W B all neighbors of v
3: for w ∈W do
4: Remove (v,w) from G
5: Eulerian(w,G)
6: Append (v,w) into the front of the edge path list
7: end for
8: Append v into the front of the vertex path list
9: end function

10: function FindEulerianCircuit(G=(V,E))
11: if Andy degree of vertices is odd or zero then
12: return
13: end if
14: vertexPathList B 0, edgePathList B 0
15: v B node ∈ G ▷ // v can be arbitrary
16: Eulerian(v,G)
17: return vertexPathList.reverse(), edgePathList.reverse()
18: end function

The time and space complexity of Algorithm 1 is O (|E|).

Problem 2

Remind that one of the property of a directed graph states that a directed graph has an
Eulerian cycle if and only if every vertex has equal in degree and out degree. In this case, we
discuss in degree and out degree separately.

In degree: For each vertex, if the first n − 2 bits of a vertex is a1a2 · · · an−2, it has two exact
directed edges from 0a1a2 · · · an−1 and 1a1a2 · · · an−1. Then the in degree of each vertex is
2.

Out degree: For each vertex, if the last n − 2 bits of a vertex is a2a3 · · · an−1, it has two exact
directed edges to a2a3 · · · an−10 and a2a3 · · · an−11. Then the out degree of each vertex is 2.

Page 1 of 3

Algorithms: Assignment 7 Yu-Chieh Kuo

Consequently, every vertex has equal in degree and out degree, which yeilds that Gn has an
Eulerian cycle; that is, Gn is a directed Eulerian graph. Moreover, we can obtain a property
that if we start from a vertex in de Bruijn graph and trace by Eulerian Path, we will receive
a de Bruijn sequence.

Problem 3

Algorithm 2 Detailed DFS in the topological sorting
1: function MainInvokingProcedure(G=(V,E))
2: for v ∈ G do
3: if v is unmarked then
4: DFS(G, v)
5: end if
6: end for
7: end function
8: function DFS(G,v)
9: mark v

10: v.inDegree B 0 ▷ // preWORK
11: for (v,w) ∈ G do ▷ // All edges in the graph
12: if w is unmarked then
13: DFS(G,w)
14: end if
15: w.inDegree + + ▷ // postWORK
16: end for
17: end function

Problem 4

The time complexity of Algorithm 3 is O (|E| + |V|).

Problem 5

The problem is equivalent to find the longest path in a graph G. Denote D(u) by the
longest valid path starting at node u, and the desired maximum number of edges for all
nodes in G is the maximum value of D(u) for all nodes in G, i.e., max D(u) ∀u ∈ G. The
algorithm is performed as Algorithm 4.

Note that the statement D(s) = [s] indicates that the longest path ending at node s (i.e.,
D(s) on the left side of the statement) is the path only containing node s (i.e., [s] on the right
side of the statement). The time complexity of Algorithm 4 is O (|E|). This DP method refers
to this post in stackoverflow.

Page 2 of 3

https://stackoverflow.com/questions/47998220/longest-path-in-a-graph

Algorithms: Assignment 7 Yu-Chieh Kuo

Algorithm 3 From DFS
1: function FromDFS(G=(V,E), T=(V,E’), v)
2: result B True
3: mark v
4: for (v,w) ∈ E′ do
5: if v.parent = w then
6: Continue
7: end if
8: if w.mark then
9: result B False

10: end if
11: w.parent B v
12: FromDFS(G,T,w)
13: end for
14: for (v,w) ∈ E do
15: if !w.marked then
16: result B False
17: end if
18: end for
19: return result
20: end function

Algorithm 4 Finding the Longest Path
1: function FindingTheLongestPath(G=(V,E))
2: D B HashMap(G) ▷ Keys are nodes and values are path
3: D(n − 1) = [n − 1] ▷ The base case
4: longestPath B D(n − 1)
5: for s : n − 2→ 0 do
6: D(s) = [s]
7: for (s, v) ∈ G do ▷ Each edge in G
8: if v > s and ([s] +D(v)).length > D(v).length then
9: D(s) = [s] +D(v)

10: end if
11: end for
12: if D(s).length > longestPath.length then
13: longestPath = D(s)
14: end if
15: end for
16: return longestPath
17: end function

Page 3 of 3

	Problem 1
	Problem 2
	Problem 3
	Problem 4
	Problem 5

