Assignment 7

Yu-Chieh Kuo B07611039⁺

⁺Department of Information Management, National Taiwan University

Problem 1

Alg	orithm 1 Find Eulerian Circuit		
1:	function Eulerian(v, G)		
2:	$W \coloneqq$ all neighbors of v		
3:	for $w \in W$ do		
4:	Remove (v, w) from G		
5:	Eulerian(w, G)		
6:	Append (v, w) into the front of the edge path list		
7:	end for		
8:	Append v into the front of the vertex path list		
9:	end function		
10:	function FINDEULERIANCIRCUIT($G=(V,E)$)		
11:	if Andy degree of vertices is odd or zero then		
12:	return		
13:	end if		
14:	vertexPathList := 0, edgePathList := 0		
15:	$v \coloneqq node \in G$	▷ // v can be arbitrary	
16:	Eulerian(v, G)		
17:	return vertexPathList.reverse(), edgePathList.reverse()		
18: end function			

The time and space complexity of Algorithm 1 is O(|E|).

Problem 2

Remind that one of the property of a directed graph states that a directed graph has an Eulerian cycle *if and only if* every vertex has equal *in degree* and *out degree*. In this case, we discuss *in degree* and *out degree* separately.

- **In degree:** For each vertex, if the first n 2 bits of a vertex is $a_1a_2 \cdots a_{n-2}$, it has two exact directed edges from $0a_1a_2 \cdots a_{n-1}$ and $1a_1a_2 \cdots a_{n-1}$. Then the in degree of each vertex is 2.
- **Out degree:** For each vertex, if the last n 2 bits of a vertex is $a_2a_3 \cdots a_{n-1}$, it has two exact directed edges to $a_2a_3 \cdots a_{n-1}0$ and $a_2a_3 \cdots a_{n-1}1$. Then the out degree of each vertex is 2.

Consequently, every vertex has equal in degree and out degree, which yeilds that G_n has an Eulerian cycle; that is, G_n is a directed Eulerian graph. Moreover, we can obtain a property that if we start from a vertex in de Bruijn graph and trace by Eulerian Path, we will receive a de Bruijn sequence.

Problem 3

```
Algorithm 2 Detailed DFS in the topological sorting
 1: function MAININVOKINGPROCEDURE(G=(V,E))
       for v \in G do
 2:
          if v is unmarked then
 3:
              DFS(G, v)
 4:
          end if
 5:
       end for
 6:
 7: end function
 8: function DFS(G,v)
       mark v
 9:
10:
       v.inDegree := 0
                                                                              ▷ // preWORK
       for (v, w) \in G do
                                                                 // All edges in the graph
11:
          if w is unmarked then
12:
              DFS(G, w)
13:
14:
          end if
          w.inDegree + +
                                                                             // postWORK
15:
       end for
16:
17: end function
```

Problem 4

The time complexity of Algorithm 3 is O(|E| + |V|).

Problem 5

The problem is equivalent to find the longest path in a graph *G*. Denote D(u) by the longest valid path starting at node *u*, and the desired maximum number of edges for all nodes in *G* is the maximum value of D(u) for all nodes in *G*, i.e., $\max D(u) \forall u \in G$. The algorithm is performed as Algorithm 4.

Note that the statement D(s) = [s] indicates that the longest path ending at node s (i.e., D(s) on the left side of the statement) is the path only containing node s (i.e., [s] on the right side of the statement). The time complexity of Algorithm 4 is O(|E|). This DP method refers to this post in stackoverflow.

Alge	rithm 3 From DFS
1: 1	nction FromDFS(G=(V,E), T=(V,E'), v)
2:	result := True
3:	mark v
4:	for $(v, w) \in E'$ do
5:	if $v.parent = w$ then
6:	Continue
7:	end if
8:	if w.mark then
9:	result := False
10:	end if
11:	w.parent := v
12:	From DFS(G, T, w)
13:	end for
14:	for $(v, w) \in E$ do
15:	if !w.marked then
16:	result := False
17:	end if
18:	end for
19:	return result
20:	nd function

Alg	orithm 4 Finding the Longest Pat	th
1:	function FINDINGTHELONGESTPA	атн(G=(V,E))
2:	$D \coloneqq HashMap(G)$	Keys are nodes and values are path
3:	D(n-1) = [n-1]	⊳ The base case
4:	$longestPath \coloneqq D(n-1)$	
5:	for $s: n - 2 \rightarrow 0$ do	
6:	D(s) = [s]	
7:	for $(s, v) \in G$ do	▷ Each edge in G
8:	if $v > s$ and ([<i>s</i>] + <i>D</i> (v))	length > D(v).length then
9:	D(s) = [s] + D(v)	
10:	end if	
11:	end for	
12:	if D(s).length > longestPath	<i>1.length</i> then
13:	longestPath = D(s)	
14:	end if	
15:	end for	
16:	return longestPath	
17:	end function	