Assignment **8**

Yu-Chieh Kuo B07611039†

†Department of Information Management, National Taiwan University

Problem 1

Ordinary array approach: In the case of the implementation for an ordinary array, for each vertex *v*, we need to find the unvisited adjacent vertex *w* with the minimal weight of edge, which takes $O(|V|^2)$. In addition, updating the value of SP after picking w takes $O(|E|)$. Hence, the total complexity by an ordinary array approach is

$$
O(|V|^2)+O(|E|)\in O(|V|^2).
$$

Min-heap approach: Firstly, building the heap takes O (|*V*|). For each vertex *v*, the unvisited adjacent vertex with the minimal length *w* is the root of heap. Retrieving the heap root and re-heapifing the min-heap takes $O(|V| \log |V|)$. Moreover, updating the value of SP after picking w takes $O(|E|\log|V|)$ in the heap approach. Hence, the total complexity by an ordinary array approach is

 $O(|V|\log|V|) + O(|E|\log|V|) \in O(|V| + |E|)\log|V|)$.

Problem 2

We prove it by contradiction. Suppose there exists two distinct minimum cost spanning trees (MCST), say *S* and *T*. Edges in *S* and *T* sorted by the order of costs are

> *e S* $\frac{S}{1}$, e_2^S e_2^S, \cdots, e_n^S and e_1^T T_1, e_2^T $e_2^T, \cdots, e_n^T.$

Assume that e_i^S $\sum_{i=1}^{S}$ is the minimum cost edge in *S* but not in *T*, and reversely e_i^T \int_i^T is the minimum cost edge in *T* but not in *S*. Suppose *e S* $\mathcal{E}^S_i < e^T_i$ WLOG, the graph *G* from $T \cup \{e^S_i\}$ S_i contains a cycle.

Now, let *e G* $\frac{G}{k}$ be the maximum cost edge of the cycle, which indicates e_k^G $\frac{1}{k}$ is not in any MCST. However, *e G* $\frac{G}{k}$ is in *G*, which is built from $T \cup \{e_i^S\}$ S_i^S). That is, *T* is a MCST, which results in a contradiction.

Problem 3

3.(a)

A simple example is described as below. Consider a desired squared graph *G* with four vertices v, w_1, w_2, w_3 and the weights of corresponding existing edge $(v, w_1) = (v, w_2) =$ $(w_2, w_3) = \ell$, and $(w_1, w_3) = 3\ell + k$. The minimum cost spanning tree of such a graph *G* is the same as the shortest-path tree rooted at *v*, where the edge (w_1, w_3) will be excluded.

3.(b)

Consider a desired triangle graph *G* with three vertices v, w_1, w_2 with the corresponding weights of edge $(v, w_1) = W_2$, $(v, w_2) = W_1$, $(w_1, w_2) = V$ following the order $W_2 > V > W_1$. Thus, the minimum cost spanning tree of such a graph *G* is different from the shortest path tree rooted at *v*, where the edge (v, w_1) will be exclude in the former, and (w_1, w_2) in the latter.

To examine whether two trees can be completely disjoint, we separate the discussion for the case of the vertex *v* with only one edge and more than one edges. In addition, we denote T_m and T_s by the minimum cost spanning tree and the shortest path tree root at *v* of the graph *G* for convenience. The idea for proofs comes from building contradictions.

- **Only one edge:** The only edge must be both in T_m and T_s clearly; otherwise *v* is disjoint from *T^m* and *T^s* , a contradiction.
- **More than one edge:** Let (*v*, *u*) be the edge rooted at *v* with the minimal edge weight. If (*v*, *u*) does not belong to T_m , then we could substitute (*v*, *u*) for any other edge (*v*, *u*') in *T*^{*m*} to make *T*^{*m*} be with lower weight. Hence, (v, u) must be in T_m .

If (*v*, *u*) does not belong to *T^s* , the shortest path from *v* to *u* contains other edge with total weight ℓ . However, $(v, u) < \ell$ for sure since G is a weighted graph. Hence, (v, u) must be in *T^s*

In conclusion, we state that the MCST and the shortest path tree cannot be completely disjoint.

Problem 4

Suppose there exists *n* vertices and *m* edges in a given graph *G*. To present the algorithm in suitable pseudocode utilizing the two operations of the Union-Find data structure, we first define Union-Find and its two operations *Find*(·) and *Union*(·, ·) formally.

We define a Union-Find over a set of *n* elements $X = \{x_1, x_2, \dots, x_n\}$ and a collection of disjoint subsets S_1, S_2, \cdots, S_k the elements in *X* belong to, where $1 \leq k \leq n$. Two operations supported by a Union-Find are defined as

- *Find*(*x*): return *S*^{*i*} where *x* \in *S*^{*i*}.
- *Union*(*Sⁱ* , *Sj*): replace *Sⁱ* and *S^j* with *Sⁱ* ∪ *S^j* .

A simple pseudocode is described as Algorithm [1](#page-2-0)

Algorithm 1 Kruskal's algorithm by Union-Find

Now we analyze the complexity of Algorithm [1.](#page-2-0) The first stage, to sort edges by their weights, takes O (*m* log *m*) . Note that

 $m \leq n^2 \iff \log m \leq 2 \log n \implies O(m \log m) \in O(m \log n).$

The second stage is to traverse all *m* edges in *G* and execute *Find* operation, which requires at most 2*m* operations. As a tree implementation of the Union-Find data structure that uses union-by-depth with depth *d* contains at least 2^{*d*} elements (that is, $n \geq 2^d \iff \log n \geq d$, the complexity of *Find* requires $O(\log n)$. Consequently, this stage uses $O(2m\log n) \in O(m\log n)$.

The last stage is to unify two disjoint subsets (*Union*(*Find*(*u*), *Find*(*v*))). We execute at most *n* union process, and the function $Union(\cdot, \cdot)$ requires a linear time $O(1)$. Hence, the time complexity is $O(n)$.

In summary, the total complexity of Kruskal's algorithm by Union-Find is

 $O(m \log n) + O(m \log n) + O(n) \in O(m \log n)$.

Problem 5

The algorithm is described as Algorithm [2](#page-3-0).

Algorithm 2 MCST Determinator

Denote $T = (V', E')$ where $|V'| = |V|$ and $|E'| = |V| - 1$, traversing all edges in *G* takes $O(|E|)$ and running DFS takes $O(|V'| + |E'|) \in O(|V|)$. In the second case of $(u, v) = decreasing$, searching all cycles in *T* takes $O(|V'| + |E'|) \in O(|V|)$, and traversing all edges in *C* takes $O(|E'|) \in O(|V|)$. In conclusion, the total complexity is $O(|V| + |E|)$.