Assignment 8

Yu-Chieh Kuo B07611039⁺

⁺Department of Information Management, National Taiwan University

Problem 1

Ordinary array approach: In the case of the implementation for an ordinary array, for each vertex v, we need to find the unvisited adjacent vertex w with the minimal weight of edge, which takes $O(|V|^2)$. In addition, updating the value of SP after picking w takes O(|E|). Hence, the total complexity by an ordinary array approach is

$$O(|V|^2) + O(|E|) \in O(|V|^2).$$

Min-heap approach: Firstly, building the heap takes O(|V|). For each vertex v, the unvisited adjacent vertex with the minimal length w is the root of heap. Retrieving the heap root and re-heapifing the min-heap takes $O(|V| \log |V|)$. Moreover, updating the value of SP after picking w takes $O(|E| \log |V|)$ in the heap approach. Hence, the total complexity by an ordinary array approach is

 $O(|V|\log|V|) + O(|E|\log|V|) \in O((|V| + |E|)\log|V|).$

Problem 2

We prove it by contradiction. Suppose there exists two distinct minimum cost spanning trees (MCST), say *S* and *T*. Edges in *S* and *T* sorted by the order of costs are

 $e_1^S, e_2^S, \cdots, e_n^S$ and $e_1^T, e_2^T, \cdots, e_n^T$.

Assume that e_i^S is the minimum cost edge in *S* but not in *T*, and reversely e_i^T is the minimum cost edge in *T* but not in *S*. Suppose $e_i^S < e_i^T$ WLOG, the graph *G* from $T \cup \{e_i^S\}$ contains a cycle.

Now, let e_k^G be the maximum cost edge of the cycle, which indicates e_k^G is not in any MCST. However, e_k^G is in *G*, which is built from $T \cup \{e_i^S\}$. That is, *T* is a MCST, which results in a contradiction.

Problem 3

3.(a)

A simple example is described as below. Consider a desired squared graph *G* with four vertices v, w_1, w_2, w_3 and the weights of corresponding existing edge $(v, w_1) = (v, w_2) = (w_2, w_3) = \ell$, and $(w_1, w_3) = 3\ell + k$. The minimum cost spanning tree of such a graph *G* is the same as the shortest-path tree rooted at v, where the edge (w_1, w_3) will be excluded.

3.(b)

Consider a desired triangle graph *G* with three vertices v, w_1, w_2 with the corresponding weights of edge $(v, w_1) = W_2, (v, w_2) = W_1, (w_1, w_2) = V$ following the order $W_2 > V > W_1$. Thus, the minimum cost spanning tree of such a graph *G* is different from the shortest path tree rooted at v, where the edge (v, w_1) will be exclude in the former, and (w_1, w_2) in the latter.

To examine whether two trees can be completely disjoint, we separate the discussion for the case of the vertex v with only one edge and more than one edges. In addition, we denote T_m and T_s by the minimum cost spanning tree and the shortest path tree root at v of the graph G for convenience. The idea for proofs comes from building contradictions.

- **Only one edge:** The only edge must be both in T_m and T_s clearly; otherwise v is disjoint from T_m and T_s , a contradiction.
- **More than one edge:** Let (v, u) be the edge rooted at v with the minimal edge weight. If (v, u) does not belong to T_m , then we could substitute (v, u) for any other edge (v, u') in T_m to make T_m be with lower weight. Hence, (v, u) must be in T_m .

If (v, u) does not belong to T_s , the shortest path from v to u contains other edge with total weight ℓ . However, $(v, u) < \ell$ for sure since G is a weighted graph. Hence, (v, u) must be in T_s

In conclusion, we state that the MCST and the shortest path tree cannot be completely disjoint.

Problem 4

Suppose there exists *n* vertices and *m* edges in a given graph *G*. To present the algorithm in suitable pseudocode utilizing the two operations of the Union-Find data structure, we first define Union-Find and its two operations $Find(\cdot)$ and $Union(\cdot, \cdot)$ formally.

We define a Union-Find over a set of *n* elements $X = \{x_1, x_2, \dots, x_n\}$ and a collection of disjoint subsets S_1, S_2, \dots, S_k the elements in *X* belong to, where $1 \le k \le n$. Two operations supported by a Union-Find are defined as

- *Find*(*x*): return S_i where $x \in S_i$.
- *Union*(S_i , S_j): replace S_i and S_j with $S_i \cup S_j$.

A simple pseudocode is described as Algorithm 1

	Algorithm	1 Kruskal's	algorithm by	v Union-Find
--	-----------	-------------	--------------	--------------

	· · ·	
1: function Kruskal'sAlgorithmByUnionFind($G=(V,E)$)		
2:	Union-Findify all vertices <i>v</i> in <i>G</i>	
3:	for $(u, v) \in E$ do	
4:	if $Find(u) \neq Find(v)$ then	
5:	Union(Find(u), Find(v))	
6:	end if	
7:	end for	
8:	end function	

Now we analyze the complexity of Algorithm 1. The first stage, to sort edges by their weights, takes $O(m \log m)$. Note that

 $m \le n^2 \iff \log m \le 2\log n \implies O(m\log m) \in O(m\log n).$

The second stage is to traverse all *m* edges in *G* and execute *Find* operation, which requires at most 2*m* operations. As a tree implementation of the Union-Find data structure that uses union-by-depth with depth *d* contains at least 2^d elements (that is, $n \ge 2^d \iff \log n \ge d$, the complexity of *Find* requires $O(\log n)$. Consequently, this stage uses $O(2m \log n) \in O(m \log n)$.

The last stage is to unify two disjoint subsets (Union(Find(u), Find(v))). We execute at most *n* union process, and the function $Union(\cdot, \cdot)$ requires a linear time O(1). Hence, the time complexity is O(n).

In summary, the total complexity of Kruskal's algorithm by Union-Find is

 $O(m\log n) + O(m\log n) + O(n) \in O(m\log n).$

Problem 5

The algorithm is described as Algorithm 2.

Algorithm 2 MCST Determinator

3115			
1:	function MCST Determinator($G=(V,E), T$)		
2:	if $(u, v) \coloneqq$ <i>increasing</i> and $(u, v) \in T$ then		
3:	Remove (u, v) from T		
4:	Run <i>DFS</i> on <i>T</i> from <i>u</i> and <i>mark</i> as 1		
5:	Run <i>DFS</i> on <i>T</i> from <i>v</i> and <i>mark</i> as 2		
6:	for $(u', v') \in E$ and $u'.mark \neq v'.mark$ do		
7:	if $(u', v') < (u, v)$ then		
8:	$newEdge \coloneqq (u', v')$		
9:	end if		
10:	end for		
11:	Add newEdge to T		
12:	else if $(u, v) := decreasing and (u, v) \notin T then$		
13:	Add (u, v) to T		
14:	$C \leftarrow \mathbf{cycle in } T$		
15:	for $(u', v') \in C$ do		
16:	if $(u', v') > (u, v)$ then		
17:	removeEdge := (u', v')		
18:	end if		
19:	end for		
20:	Remove removeEdge from T		
21:	end if		
22:	22: end function		

Denote T = (V', E') where |V'| = |V| and |E'| = |V| - 1, traversing all edges in *G* takes O(|E|) and running *DFS* takes $O(|V'| + |E'|) \in O(|V|)$. In the second case of (u, v) = decreasing, searching all cycles in *T* takes $O(|V'| + |E'|) \in O(|V|)$, and traversing all edges in *C* takes $O(|E'|) \in O(|V|)$. In conclusion, the total complexity is O(|V| + |E|).