
Algorithms
National Taiwan University, Fall 2022

Assignment 8
Yu-Chieh Kuo B07611039†

†Department of Information Management, National Taiwan University

Problem 1

Ordinary array approach: In the case of the implementation for an ordinary array, for each
vertex v, we need to find the unvisited adjacent vertex w with the minimal weight of
edge, which takes O (|V|2). In addition, updating the value of SP after picking w takes
O (|E|). Hence, the total complexity by an ordinary array approach is

O
(
|V|2
)
+ O (|E|) ∈ O

(
|V|2
)
.

Min-heap approach: Firstly, building the heap takesO (|V|). For each vertex v, the unvisited
adjacent vertex with the minimal length w is the root of heap. Retrieving the heap root
and re-heapifing the min-heap takesO (|V| log |V|). Moreover, updating the value of SP
after picking w takes O (|E| log |V|) in the heap approach. Hence, the total complexity
by an ordinary array approach is

O (|V| log |V|) + O (|E| log |V|) ∈ O ((|V| + |E|) log |V|) .
Problem 2

We prove it by contradiction. Suppose there exists two distinct minimum cost spanning
trees (MCST), say S and T. Edges in S and T sorted by the order of costs are

eS
1 , e

S
2 , · · · , eS

n and eT
1 , e

T
2 , · · · , eT

n .

Assume that eS
i is the minimum cost edge in S but not in T, and reversely eT

i is the minimum
cost edge in T but not in S. Suppose eS

i < eT
i WLOG, the graph G from T ∪ {eS

i } contains a
cycle.

Now, let eG
k be the maximum cost edge of the cycle, which indicates eG

k is not in any MCST.
However, eG

k is in G, which is built from T ∪ {eS
i }. That is, T is a MCST, which results in a

contradiction.

Problem 3

3.(a)

A simple example is described as below. Consider a desired squared graph G with
four vertices v,w1,w2,w3 and the weights of corresponding existing edge (v,w1) = (v,w2) =
(w2,w3) = ℓ, and (w1,w3) = 3ℓ + k. The minimum cost spanning tree of such a graph G is the
same as the shortest-path tree rooted at v, where the edge (w1,w3) will be excluded.

Page 1 of 4



Algorithms: Assignment 8 Yu-Chieh Kuo

3.(b)

Consider a desired triangle graph G with three vertices v,w1,w2 with the corresponding
weights of edge (v,w1) = W2, (v,w2) = W1, (w1,w2) = V following the order W2 > V > W1.
Thus, the minimum cost spanning tree of such a graph G is different from the shortest path
tree rooted at v, where the edge (v,w1) will be exclude in the former, and (w1,w2) in the latter.

To examine whether two trees can be completely disjoint, we separate the discussion for
the case of the vertex v with only one edge and more than one edges. In addition, we denote
Tm and Ts by the minimum cost spanning tree and the shortest path tree root at v of the graph
G for convenience. The idea for proofs comes from building contradictions.

Only one edge: The only edge must be both in Tm and Ts clearly; otherwise v is disjoint from
Tm and Ts, a contradiction.

More than one edge: Let (v,u) be the edge rooted at v with the minimal edge weight. If
(v,u) does not belong to Tm, then we could substitute (v,u) for any other edge (v,u′) in
Tm to make Tm be with lower weight. Hence, (v,u) must be in Tm.

If (v,u) does not belong to Ts, the shortest path from v to u contains other edge with
total weight ℓ. However, (v,u) < ℓ for sure since G is a weighted graph. Hence, (v,u)
must be in Ts

In conclusion, we state that the MCST and the shortest path tree cannot be completely
disjoint.

Problem 4

Suppose there exists n vertices and m edges in a given graph G. To present the algorithm
in suitable pseudocode utilizing the two operations of the Union-Find data structure, we
first define Union-Find and its two operations Find(·) and Union(·, ·) formally.

We define a Union-Find over a set of n elements X = {x1, x2, · · · , xn} and a collection of
disjoint subsets S1,S2, · · · ,Sk the elements in X belong to, where 1 ≤ k ≤ n. Two operations
supported by a Union-Find are defined as

• Find(x): return Si where x ∈ Si.

• Union(Si,S j): replace Si and S j with Si ∪ S j.

A simple pseudocode is described as Algorithm 1

Page 2 of 4



Algorithms: Assignment 8 Yu-Chieh Kuo

Algorithm 1 Kruskal’s algorithm by Union-Find
1: function Kruskal’sAlgorithmByUnionFind(G=(V,E))
2: Union-Findify all vertices v in G
3: for (u, v) ∈ E do
4: if Find(u) , Find(v) then
5: Union(Find(u),Find(v))
6: end if
7: end for
8: end function

Now we analyze the complexity of Algorithm 1. The first stage, to sort edges by their
weights, takes O (m log m

)
. Note that

m ≤ n2 ⇐⇒ log m ≤ 2 log n =⇒ O (m log m
) ∈ O (m log n

)
.

The second stage is to traverse all m edges in G and execute Find operation, which requires
at most 2m operations. As a tree implementation of the Union-Find data structure that uses
union-by-depth with depth d contains at least 2d elements (that is, n ≥ 2d ⇐⇒ log n ≥ d, the
complexity of Find requiresO (log n

)
. Consequently, this stage usesO (2m log n

) ∈ O (m log n
)
.

The last stage is to unify two disjoint subsets (Union(Find(u),Find(v))). We execute at
most n union process, and the function Union(·, ·) requires a linear time O (1). Hence, the
time complexity is O (n).

In summary, the total complexity of Kruskal’s algorithm by Union-Find is

O (m log n
)
+ O (m log n

)
+ O (n) ∈ O (m log n

)
.

Problem 5

The algorithm is described as Algorithm 2.

Page 3 of 4



Algorithms: Assignment 8 Yu-Chieh Kuo

Algorithm 2 MCST Determinator
1: function MCST Determinator(G=(V,E), T)
2: if (u, v) B increasing and (u, v) ∈ T then
3: Remove (u, v) from T
4: Run DFS on T from u and mark as 1
5: Run DFS on T from v and mark as 2
6: for (u′, v′) ∈ E and u′.mark , v′.mark do
7: if (u′, v′) < (u, v) then
8: newEdge B (u′, v′)
9: end if

10: end for
11: Add newEdge to T
12: else if (u, v) B decreasing and (u, v) < T then
13: Add (u, v) to T
14: C← cycle in T
15: for (u′, v′) ∈ C do
16: if (u′, v′) > (u, v) then
17: removeEdge B (u′, v′)
18: end if
19: end for
20: Remove removeEdge from T
21: end if
22: end function

Denote T = (V′,E′) where |V′| = |V| and |E′| = |V| − 1, traversing all edges in G takes
O (|E|) and running DFS takes O (|V′| + |E′|) ∈ O (|V|). In the second case of (u, v) = decreasing,
searching all cycles in T takes O (|V′| + |E′|) ∈ O (|V|), and traversing all edges in C takes
O (|E′|) ∈ O (|V|). In conclusion, the total complexity is O (|V| + |E|).

Page 4 of 4


	Problem 1
	Problem 2
	Problem 3
	3.(a)
	3.(b)
	Problem 4
	Problem 5

