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What is Econometrics

• Part of statistics.

• The statistical methods motivated by problems in economics and social science.

Philosophy

• Persona ⇐⇒ Shadow in your mind⇐ Psychoanalysis.

• Mind ⇐⇒ Body.

• Observers, organizer (Society, human) ⇐⇒ Being observed environment + every-
thing.

• Tightness for muscle causes the anxiety and tiredness.

• Duality ⇐⇒ Non-dual⇒ Generate cutoffs in each line.

Science

• Science is the study of observation.

• Data are quantified by observations. Things are interpreted as sequences of random
variables or vectors. For example, we may have the observation
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 , · · · ,
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 , · · ·
 ,

where i denotes individuals.

The sequences follow some distributions, for example,
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We obtain a special case: the individual observations are identically independently
distributed (i.i.d.)
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• Data is the observed, realized sequences. For example,
y1

x1

z1

 ,
y2

x2

z2

 , · · · ,
yi

xi

zi

 , · · · ,
yn

xn

zn


 =

yi

xi

zi




n

i=1

,

where n denotes the sample size or the number of observations.

Types of Data

Single-indexed yi, xi: i denotes individuals (Cross-sectional data)
yt, xt: t denotes discrete/continuous time (Time-series data)

Multiple-indexed yit, xit: (Panel data)
yi jt, xi jt: (Multi-dimensional panel spatial data)

Model

Model is the probability distribution over a sequence of random variables or vectors. For
example,

• We have a sequence y1, y2, · · · , yi, · · · , yn. For each i, yi ∼ N
(
µi, σ2

i

)
. Then, we estimate

µi, σ2
i for all i.

• We have two sequence y1, y2, · · · , yi, · · · , yn and x1, x2, · · · , xi, · · · , xn. For all i, the model
represents

yi = x′iβ + ei,

where ei ∼ N
(
0, σ2). We then want to estimate β, where β is the parameters of interest.

Note that yi, xi and β are 1 × 1, 1 × k, and k × 1 vectors.

Micro-foundations

Whenever an (econometrics) model is derived from an economic model (optimization
problem), we say that the model has a micro-foundation.

Parameters in econometrics model are functions of the primitive parameters in utility
function or production functions, etc.

Exogeneity and Endogeneity

• Exogenous (given) variables are variables determined outside the world.

• Endogenous variables are variables determined inside the model. Typical description
of endogeneity in econometrics textbooks represents

E[xiei] , 0.

This statement indicates that there are some variables in xi that are determined by
conditions or equations not in the current model. A typical solution described in the
textbook is to add equations to complete the model.
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Topics

The following classes will cover topics including

1. Unbiased and consistent conditions (as the sample size goes to infinity).

2. Constrained estimation.

3. Shrinkage estimation (biased and inconsistent). Why we need to discuss such a biased
and inconsistent estimator is that there is a trade-off between variance (Cramer Rao
lower bound) and bias. We concern the prediction error (prediction performance, in
other words) in some model. A simple description is

E
[
yi − ŷi

]2
= |bias|2 + Variance.

4. Asymptotic theory (also known as large-sampe theory, discussing the properties when
the sample size goes to infinity).

The textbook refers to Bruce Hanson, Econometrics.

Consistent Estimation

Least square

Criterion or objective functions satisfy the following form

1
n

n∑
i=1

(
yi − f (xi; β)

)2 or E
[
yi − f (xi; β)

]2,
where β is a k×1 vector and denotes the parameters of interest. k is the number of parameters.

Suppose we have data
y1 · · · yi · · · yn

x1 · · · xi · · · xn

k × 1 k × 1 k × 1,

we denote the conditional expectation of y by µi ≡ E
[
yi | xi

]
, define εi ≡ yi − E

[
yi | xi

]
, and

impose an assumption E[εi | xi] = 0.
Suppose g(xi) are some functions of xi, we want to minimize E

[
yi − g(xi)

]2, which can be
expanded to

E
[
yi − g(xi)

]2
= E

[
yi − µi + µi − g(xi)

]2
= E

[
(yi − µi)2 + (µi − g(xi))2 + 2(yi − µi)(µi − g(xi))

]
= E

[
ε2
]
+ E
[
µi − g(xi)

]2
≥ 0.

The minimizer here is to choose g(xi) = µi = E
[
y1 | xi

]
.

Now we turn into another scenario. Suppose we have the following minimization prob-
lem

min
β
E
[
yi − x′iβ

]2
≡ Q(β),
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and we define β0 ≡ arg minE
[
yi − x′iβ

]2
. The FOC of Q(β) gives

∂Q
∂β
E
[
2xi(yi − x′iβ0)

]
= 0.

Here, β0 is obtained by β0 = E
[
xix′i
]−1
E
[
xiyi
]

Now, we define ei ≡ yi − x′iβ0, we must automat-
ically hold the result

E[xiei] = E
[
xi(yi − x′iβ0)

]
= E

[
xiyi − xix′i E

[
xix′i
]−1
E
[
xiyi
]]

(Assume E
[
xix′i
]

is invertible)

= 0. why???????

However, x′iβmay not be the true E
[
yi | xi

]
.

In general, we can summarize the above problem as

β0 = arg min
β

E
[
yi − f (xi; β)

]2.
If we define ei ≡ yi − f (xi; β), then E

[
∂ fi
∂β ei

]
= 0.

In advance, suppose we have the following problem

Qn(β) ≡ 1
n

n∑
i=1

(yi − x′iβ)
2,

we have

β̂ ≡ arg min
β

Qn(β) =

1n
n∑

i=1

xix′i

−1 1n
n∑

i=1

xiy′i

 .
Law of large number

Suppose z1, · · · , zn are i.i.d., then

1
n

n∑
i=1

zi
p→ E[zi]

1
n

n∑
i=1

xix′i
p→ E
[
xix′i
]

1
n

n∑
i=1

xiy′i
p→ E
[
xiy′i
]
.

That is,
β̂

p→ β0.

Remarks on the true model

• We may define the true parameters as β0, then we have E[xiei] = 0

• Another way to start the econometrics problem is to define yi = x′iβ0 + ei with an
assumption E[xiei] = 0.

If E[xiei] , 0, we need instruments.
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Asymptotic Theory

(This section refers to the Chapter 6 of the Bruce Hansen’s econometrics textbook.)
To discuss the asymptotic properties, we need to define the limit firstly.

Definition. Suppose we have a non-random sequence of numbers {a1, a2, · · · , an, · · ·},

an → a as n→∞ ⇐⇒ lim
n→∞

an = a.

Clearly,
∀ δ > 0,∃ nδ < ∞ s.t. |an − a| < δ ∀n > nδ.

□

Convergence in probability

If zn converges in probability to z as n→∞, we say

zn
p→ z ⇐⇒ plim

n→∞
zn = z.

Clearly,
∀ δ > 0, lim

n→∞
Prob (|zn − z| ≤ δ) = 1.

(Some notation states limn→∞ Prob (|zn − z| > δ) = 0)

Almost sure convergence

We denote zn converging almost surely to z as n→∞ by zn
a.s.→ z. Clearly,

∀ δ > 0,Prob
(
lim
n→∞
|zn − z| ≤ δ

)
= 1.

Note that the almost sure convergence implies convergence in probability.
Following the conception of convergence above, we can now introduce the law of large

number:

Weak Law of Large Number (WLLN) 1
n

∑n
i=1 yi

p→ E[yi
]
. The data yi is i.i.d. here.

Strong Law of Large Number (SLLN) 1
n

∑n
i=1 yi

a.s.→ E[yi
]
. The data yi is i.i.d. here.

Convergence in distribution

Given z1, z2, · · · , zn as a sequence of random variables or vectors, and F1(z),F2(z), · · · ,Fn(z)

are probability distributions. If zn converges in distribution to z, says zn
d→ z, it gives

Fn(z)→ F(z) point-wisely (for all continuous point of F(·)).

Central limit theorem

Given an i.i.d. sequence of random variables
{
y1, y2, · · · , yn

}
and the true expectation

E
[
yi
]
= µ, we have

√
n

1n
n∑

i=1

yi − µ
 d→N

(
0,E
[
yi − µ

]2) .
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Remark. The key conception is independent in i.i.d. □

Remark. The re-scale coefficient
√

n aims at decreasing the convergence speed in distribu-
tion to maintain the randomness. 1

n might be too fast. □

In the case of linear least square, we obtain

β̂ =

1n
n∑

i=1

xix′i

−1 1n
n∑

i=1

xiy′i

 ,
and it implies

β̂ − β0 =

1n
n∑

i=1

xix′i

−1 1n
n∑

i=1

xiei

 why??????

p→ E
[
xix′i
]
E[xiei]

p→ 0.

After re-scaling by
√

n, it alters to

√
n(β̂ − β0) =

1n
n∑

i=1

xix′i

−1 √n
1
n

n∑
i=1

xiei


and the latter part derives to

√
n

1n
n∑

i=1

xiei − E[xiei]

 d→N
(
0,E
[
xix′ie

2
i

])
since E[xiei] = 0.

Hence, √
n(β̂ − β0) d→N

(
0,E
[
xix′i
]−1
E
[
xix′ie

2
i

]
E
[
xix′i
]−1
)
.
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