Week **2: N**ov**. 10, 2022**

Note Writer: Yu-Chieh Kuo†

†Department of Information Management, National Taiwan University

Asymptotics (Large-Sample Theory)

Typically, in stats or econometrics, we derive the properties of estimators by taking expectations and taking sample size goes to infinity. For example, given *i.i.d.* data y_1, \dots, y_n and the corresponding expectation $\mathbb{E}[y_i] = \mu$, we are able to estimate

$$
\hat{\mu} \equiv \frac{1}{n} \sum_{i=1}^{n} y_i \text{ and } \mathbb{E}[\hat{\mu}] = \mu.
$$

Another example yeilds

$$
\hat{\beta}_{OLS} = \left(\frac{1}{n}\sum_{i=1}^n x_i x_i'\right)^{-1} \left(\frac{1}{n}\sum_{i=1}^n x_i y_i\right)
$$

$$
\xrightarrow{p} \left(\mathbb{E}\left[x_i x_i'\right]\right)^{-1} \mathbb{E}\left[x_i y_i\right]
$$

Law of Large Numbers

Given z_1, z_2, \dots, z_n are *i.i.d.* (not necessary), we have

$$
\bar{z}_n \equiv \frac{1}{n} \sum_{i=1}^n z_i \text{ and } \bar{z}_n \stackrel{p}{\to} \mathbb{E}[z_i]
$$

Note that it is Weak Law of Large Number (WLLN) and almost-sure convergence here.

Central Limit Theorem

Given z_1, z_2, \dots, z_n are *i.i.d.* (not necessary) and $\mathbb{E}[z_i] \equiv \mu$, where z_i are $k \times 1$ vectors, we have

$$
\sqrt{n}(\bar{z}_n-\mu)\stackrel{d}{\rightarrow}\mathcal{N}(0,\mathbb{E}[(z_i-\mu)(z_i-\mu)']),
$$

where $\mathbb{E}[(z_i - \mu)(z_i - \mu)'] \equiv Var(z_i).$

Least Square

Given the data

we define

$$
Y \equiv \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} \text{ and } X \equiv \begin{pmatrix} x'_1 \\ x'_2 \\ \vdots \\ x'_n \end{pmatrix}.
$$

Theorem. Suppose $g(x_i)$ is some function of x_i . Then, the conditional mean of y_i , $\mathbb{E}[y_i | x_i] \equiv$ μ_i , minimize $\mathbb{E}[y_i - g(x_i)]^2$. That is, $g(x_i) = \mu_i$ is the minimizer. □

Denote the predicted y_i as \hat{y}_i and define $\hat{\mathbb{E}}[\cdot] \equiv \frac{1}{n}$ $\frac{1}{n} \sum_{i=1}^{n} (\cdot)$, we want to minimize

$$
Q_{\infty}(\beta) \equiv \mathbb{E}[y_i - \hat{y}_i]^2
$$
 and $Q_n(\beta) \equiv \mathbb{E}[y_i - \hat{y}_i]^2$

by using linear curve $\hat{y}_i = x'_i \beta$, where x'_i and β are $1 \times k$ and $k \times 1$ vectors, respectively. Note that econometrisians call *Q* as the objective function, and statistisians call it as the criterion function.

Theorem. The minimizer of $\mathbb{E}\left[y_i - x'_i \beta\right]^2$ is

$$
\beta_{\infty} = \left(\mathbb{E}\big[x_i x_i'\big]\right)^{-1}(\mathbb{E}[x_i y_i]).
$$

The minimizer of $\mathbb{E}[y_i - \hat{y}_i]^2$ is

$$
\hat{\beta} = (\hat{\mathbb{E}}[x_i x'_i])^{-1} (\hat{\mathbb{E}}[x_i y_i]).
$$

Here, if we define

$$
e_i \equiv y_i - x'_i \beta_\infty \text{ and } \hat{e}_i \equiv y_i - x'_i \hat{\beta}
$$

$$
E \equiv \begin{pmatrix} e_1 \\ \vdots \\ e_n \end{pmatrix} \qquad \qquad \hat{E} \equiv \begin{pmatrix} \hat{e}_1 \\ \vdots \\ \hat{e}_n \end{pmatrix}.
$$

then

$$
\mathbb{E}[x_i e_i] = 0 \text{ and } \hat{\mathbb{E}}[x_i \hat{e}_i] = 0.
$$

Assume observations are *i.i.d.* since

$$
\hat{\mathbb{E}}[x_i x'_i] \stackrel{p}{\to} \mathbb{E}[x_i x'_i] \text{ and } \hat{\mathbb{E}}[x_i y_i] \stackrel{p}{\to} \mathbb{E}[x_i y_i]
$$

therefore, we obtain $\hat{\beta} \stackrel{p}{\rightarrow} \beta_{\infty}$.

Remark. $x_i^{\prime} \beta_{\infty}$ may not to be the true μ_i but we know $\hat{\beta}$ converges to β_{∞} . **Remark.**

$$
Q_n(\beta) = \frac{1}{n} \sum_{i=1}^n (y_i - x'_i \beta)^2 \xrightarrow{p} Q_{\infty}(\beta) = \mathbb{E} [y_i - x'_i \beta]^2
$$

$$
\hat{\beta} \equiv \argmin_{\beta} Q_n(\beta) \xrightarrow{p} \beta_{\infty} \equiv \argmin_{\beta} Q_{\infty}(\beta).
$$

Typically, in econometrics textbook, $β_∞$ is the true parameters. That is, consistency means that estimators converge to true parameters in probability. that estimators converge to true parameters in probability.

□

Finite sample properties

Given the model $Y = X\beta_{\infty} + E$, we have

$$
\hat{\beta} = (X'X)^{-1}(X'Y)
$$
 and $\hat{\beta} = \beta_{\infty} + (X'X)^{-1}X'E$.

Note that *X* and *Y* are *n* × *k* and *n* × 1 matrix and vector.

- We say the parameter as unbiasedness if $\mathbb{E}[\hat{\beta} | X] = \beta_{\infty}$ by assuming $\mathbb{E}[E | X] = 0$.
- We obtain

$$
\mathbb{E}\Big[\Big(\hat{\beta}-\beta_{\infty}\Big)\Big(\hat{\beta}-\beta_{\infty}\Big)' \mid X\Big] = \sigma^2 (X'X)^{-1}
$$

by assuming $\mathbb{E}[EE' | X] = \sigma^2 I_n$.

• If $E \sim \mathcal{N}(0, \sigma^2 I_n)$, we obtain

$$
\hat{\beta} \mid X \sim \mathcal{N}\left(\beta_{\infty}, \sigma^2 (X'X)^{-1}\right).
$$

Asymptotic properties (Large-Sample properties)

Given the model $y_i = x_i' \beta_{\infty} + e_i$, we have

$$
\hat{\beta} = \left(\frac{1}{n}\sum_{i=1}^{n} x_i x_i'\right)^{-1} \left(\frac{1}{n}\sum_{i=1}^{n} x_i y_i\right) = \beta_{\infty} + \left(\frac{1}{n}\sum_{i=1}^{n} x_i x_i'\right)^{-1} \left(\frac{1}{n}\sum_{i=1}^{n} x_i e_i\right).
$$

The last part is sometimes called the sampling error. Note that since $\frac{1}{n}\sum_{i=1}^{n}x_ie_i \xrightarrow{p} \mathbb{E}[x_ie_i] = 0$, we have the consistency property

$$
\hat{\beta} \xrightarrow{p} \beta_{\infty}.
$$

Next, by re-scaling and the substraction, the estimators turns to

$$
\sqrt{n}(\hat{\beta}-\beta_{\infty})=\left(\frac{1}{n}\sum_{i=1}^n x_i x_i'\right)^{-1}\left(\sqrt{n}\frac{1}{n}\sum_{i=1}^n x_i e_i\right).
$$

By CLT,

$$
\sqrt{n}\left(\frac{1}{n}\sum_{i=1}^n x_i e_i - \mathbb{E}[x_i e_i]\right) \stackrel{d}{\rightarrow} \mathcal{N}\left(0, \mathbb{E}[x_i x_i' e_i^2]\right)
$$

since $\mathbb{E}[x_i e_i] = 0$, therefore, it alters to

$$
\sqrt{n}(\hat{\beta}-\beta_{\infty}) = \left(\frac{1}{n}\sum_{i=1}^{n}x_{i}x_{i}'\right)^{-1}\left(\sqrt{n}\frac{1}{n}\sum_{i=1}^{n}x_{i}e_{i}\right)
$$

$$
\xrightarrow{d} \left(\mathbb{E}\left[x_{i}x_{i}'\right]\right)^{-1}\mathcal{N}\left(0,\mathbb{E}\left[x_{i}x_{i}'e_{i}^{2}\right]\right)
$$

$$
\xrightarrow{\rightarrow} \mathcal{N}\left(0,\left(\mathbb{E}\left[x_{i}x_{i}'\right]\right)^{-1}\mathbb{E}\left[x_{i}x_{i}'e_{i}^{2}\right]\left(\mathbb{E}\left[x_{i}x_{i}'\right]\right)^{-1}\right).
$$

Assume that $\mathbb{E}\left[x_i x_i' e_i^2\right]$ $\mathbb{E}\left[x_i x'_i\right] \sigma^2$, where $\sigma^2 \equiv \mathbb{E}\left[e_i^2\right]$ $\binom{2}{i}$, the asymptotic covariance matrix is $\sigma^2 \Big(\mathbb{E} \big[x_i x_i' \big] \Big)^{-1}.$

Remark. The existence of inverse $(X'X)^{-1}$ and $(E[x_ix'_i])^{-1}$ means that there is no perfect multi-collinearity. □ **Theorem.** $(X'X)^{-1}$ exists if and only if the columns of *X* are linearly independent. To elaborate, the eigenvalues of *X* ′*X* are not equal to 0. □

Note that

$$
\text{plim}_{n\to\infty} \frac{1}{n} X'X = \mathbb{E}\big[x_i x_i'\big].
$$

The existence issues mentioned in the remark and the theorem above reveals the identification; that is, we can identify the unknown parameters.

Identification

These equations are identical:

$$
\mathbb{E}\Big[x_i x_i'\Big]\beta = \mathbb{E}\big[x_i y_i\big]
$$

$$
\left(\frac{1}{n} \sum_{i=1}^n x_i x_i'\right)\beta = \frac{1}{n} \sum_{i=1}^n x_i y_i
$$

$$
(X'X)\beta = X'Y
$$

Here if the inverse of *X* ′*X* exists; that is, *X* ′*X* has *k* equations and we have *k* unknown β. Note: chi-square are the square of normal distribution.

Projection and residual

The projection matrix is defined as $P = X(X/X)^{-1}X'$. To represent the projection matrix mathematically, it projects vectors into the subspace spanned by columns of *X*. To elaborate, for any vector *V*, *PV* is the linear combination of columns of *X*.

To be more econometrics, it comes from

$$
\hat{Y} = X\hat{\beta} = X(X'X)^{-1}X'Y \equiv PY.
$$

Now, we define another matrix $M \equiv I_n - P$, where M is $n \times n$. We have the following properties for *M* and *P*:

- *P*, *M* are symmetric.
- $PP = P$.
- \bullet *MM* = *M*.
- *PM* = 0 (important in the calculation of prediction errors).
- *trace*(*P*) = *k* and *trace*(*M*) = *n*−*k*. For any square matrix *A*, *trace*(*A*) is the sum of diagnol entries of *A*. Moreover, *trace*(*AB*) = *trace*(*BA*).

Prediction error

Suppose we have the true in-sample data and model y_i^{in} μ_i ^{*in*}</sup> $=$ μ_i + e_i ^{*in*} *i* generated and estimated by in-sample data x_i , and there exists an out-sample data y_i^{out} *i* generated by same in-sample x_i , i.e., y_i^{out} $\mu_i^{out} = \mu_i + e_i^{out}$ \sum_{i}^{out} . Note that $y_i = \mu_i + e_i$ is really the true model given $\mathbb{E}[y_i | x_i] \equiv \mu_i \iff$ $e_i \equiv y_i - \mu_i$. Now, we want to calculate the expected square errors

$$
\mathbb{E}\big[\big(Y^{in}-\hat{Y}\big)'(Y^{in}-\hat{Y}\big) \mid X\big] \text{ and } \mathbb{E}\big[\big(Y^{out}-\hat{Y}\big)'(Y^{out}-\hat{Y}\big) \mid X\big]
$$

to specify the prediction power of the model. Observe that

$$
Y^{in} - X\hat{\beta} = \mu + E^{in} - X\hat{\beta}
$$

\n
$$
= \mu + E^{in} - X(X'X)^{-1}X'(\mu + E^{in})
$$

\n
$$
= (I - P)\mu + (I - P)E^{in}
$$

\n
$$
Y^{out} - X\hat{\beta} = \mu + E^{out} - X\hat{\beta}
$$

\n
$$
= \mu + E^{out} - X(X'X)^{-1}X'(\mu + E^{in})
$$

\n
$$
= (I - P)\mu + E^{out} - PE^{in}.
$$

Hence, we can take the expectation of the square error

$$
\mathbb{E}[(Y^{in} - \hat{Y})'(Y^{in} - \hat{Y}) \mid X] = \mathbb{E}[\mu'M'M\mu + E^{in}M'ME^{in} + \mu'M'ME^{in} + E^{in}'M'M\mu]
$$
\n
$$
= (n - k)\sigma^2 + \mu'(I - P)\mu
$$
\n(Since $\mu'M'ME^{in} = E^{in}'M'M\mu = 0$)\n
$$
\mathbb{E}[(Y^{out} - \hat{Y})'(Y^{out} - \hat{Y}) \mid X] = \mathbb{E}[\mu'M'M\mu + \mu'M'E^{out} - \mu'M'PE^{in} + E^{out}M\mu + E^{out}E^{out}
$$
\n
$$
-E^{out}PE^{in} + E^{in}PM\mu - E^{in}P'E^{out} + E^{in}P'PE^{in} \mid X]
$$
\n
$$
= (n + k)\sigma^2 + \mu'(I - P)\mu.
$$

Only the highlighted terms remain, and others go to 0 after taking the expectation. The reasons for being 0 include

Independence: μ and E^{out} ; E^{in} and E^{out} are independent. Therefore, the expectation term goes to 0.

PM Matrix: *PM* = 0 by definition.

By dividing into *n*, prediction errors alter to

$$
\frac{1}{n}\mathbb{E}\Big[\Big(Y^{in}-\hat{Y}\Big)'\Big(Y^{in}-\hat{Y}\Big)\Big|\,X\Big] = \sigma^2-\frac{k}{n}\sigma^2+\frac{1}{n}\mu'(I-P)\mu
$$
\n
$$
\frac{1}{n}\mathbb{E}\Big[\Big(Y^{out}-\hat{Y}\Big)'\Big(Y^{out}-\hat{Y}\Big)\Big|\,X\Big] = \sigma^2+\frac{k}{n}\sigma^2+\frac{1}{n}\mu'(I-P)\mu.
$$

Note that when *k* > *n* (*k* is the number of variables), *X* ′*X* is not invertible. Consequently, it is not a case.

Now, comparing in-sample and out-sample prediction errors yeilds

$$
\mathbb{E}\Big[\Big(Y^{out}-\hat{Y}\Big)'\Big(Y^{out}-\hat{Y}\Big) \mid X\Big]-\mathbb{E}\Big[\Big(Y^{in}-\hat{Y}\Big)'\Big(Y^{in}-\hat{Y}\Big) \mid X\Big]=2k\sigma^2 \text{ (treated as a penalty)}.
$$

There are many choices of the variable sets. Conventionally, people use the biggest approximating linear model to estimate σ^2 .

Remark.

- The in-sample prediction error always suggests to use more complex models.
- However, the out-sample prediction error exhibits a trade-off between bias and variance. It penalizes too much variables.

Remark. For any matrix *A*,

$$
\begin{aligned} \mathbb{E}[E'AE] &= \operatorname{trace}(\mathbb{E}[E'AE]) \\ &= \mathbb{E}[\operatorname{trace}(E'AE)] \\ &= \mathbb{E}[\operatorname{trace}(AEE')] \\ &= \operatorname{trace}(A \mathbb{E}[EE']) \\ &= \operatorname{trace}(A \sigma^2 I_n) \\ &= \sigma^2 \operatorname{trace}(A). \end{aligned}
$$

Model Selection Theory

Mallows CP

Mallows CP calculates

$$
\mathbb{E}\big[(\mu - \hat{\mu})'(\mu - \hat{\mu}) \mid X\big] = k\sigma^2 + \mu'(I - P)\mu,
$$

where $\hat{\mu} = \hat{Y} = \hat{X}\hat{\beta}$. The result is similar to the out-sample prediction error.

Nonlinear Least Square (NLS)

Given *i.i.d.* data

 y_1 , y_2 , \cdots , y_n dependent variables 1×1 x_1 , x_2 , \cdots , x_n independent variables, $k \times 1$

and the model $y_i = f(x_i; \beta) + e_i$. The objective function is

$$
Q_n(\beta) \equiv \frac{1}{n} \sum_{i=1}^n (y_i - f(x_i; \beta))^2 \stackrel{p}{\to} Q_\infty(\beta) \equiv \mathbb{E}[y_i - f(x_i; \beta)]^2.
$$

Here, econometrisians impose some restrictions:

Identification assumption: $\beta_{\infty} \equiv \arg \min_{\beta} Q_{\infty}(\beta)$ uniquely exists.

Probability convergence assumption: $Q_n(\beta) \xrightarrow{p} Q_\infty(\beta)$ uniformly.

Then, we have

$$
\hat{\beta} \equiv \argmin_{\beta} Q_n(\beta) \stackrel{p}{\rightarrow} \beta_{\infty} \equiv \argmin_{\beta} Q_{\infty}(\beta),
$$

i.e., a consistent estimator.

Statistical properties

FOC results in the estimated parameter (here $\hat{\beta}$). Clearly,

$$
0=\frac{\partial Q_n(\hat{\beta})}{\partial \beta}=\frac{-2}{n}\sum_{i=1}^n(y_i-f(x_i;\hat{\beta}))\frac{\partial f(x_i;\hat{\beta})}{\partial \beta}.
$$

Therefore, we need to use numerical methods to solve the nonlinear problems.

Mean value theorem

However, we can still estimate the nonlinear function by using the mean value theorem.

$$
0=\frac{\partial Q_n(\hat{\beta})}{\partial \beta}=\frac{\partial Q_n(\beta)}{\partial \beta}+\frac{\partial^2 Q_n(\beta_m)}{\partial \beta \partial \beta'}(\hat{\beta}-\beta),
$$

where $\beta_m \in [\hat{\beta}, \beta]$. Since $\hat{\beta} \stackrel{p}{\to} \beta$, therefore, it gives $\beta_m \stackrel{p}{\to} \beta$. Moreover, re-writing the NLS problem as an asymptotic form gives

$$
\sqrt{n}(\hat{\beta}-\beta) = \left(\frac{\partial^2 Q_n(\beta_m)}{\partial \beta \partial \beta'}\right)^{-1} \left(-\sqrt{n}\frac{\partial Q_n(\beta)}{\partial \beta}\right).
$$

If

$$
-\sqrt{n}\frac{\partial Q_n(\beta)}{\partial \beta} \stackrel{d}{\rightarrow} \mathcal{N}\left(0, \underset{n\rightarrow\infty}{\text{plim}}\left(n\frac{\partial Q_n(\beta)}{\partial \beta}\frac{\partial Q_n(\beta)}{\partial \beta'}\right)\right),
$$

then the distribution asymptotes to

$$
\sqrt{n}(\hat{\beta}-\beta) \stackrel{d}{\rightarrow} \mathcal{N}\Bigg(0, \left(\mathop{\rm plim}\limits_{n\rightarrow\infty}\frac{\partial^2 Q_n(\beta)}{\partial \beta \partial \beta'}\right)^{-1} \left(\mathop{\rm plim}\limits_{n\rightarrow\infty}n\frac{\partial Q_n(\beta)}{\partial \beta}\frac{\partial Q_n(\beta)}{\partial \beta'}\right) \left(\mathop{\rm plim}\limits_{n\rightarrow\infty}\frac{\partial^2 Q_n(\beta)}{\partial \beta \partial \beta'}\right)^{-1}\Bigg).
$$

In addition,

$$
\frac{\partial Q_n(\beta)}{\partial \beta} = \frac{1}{n} \sum_{i=1}^n \frac{\partial f_i(\beta)}{\partial \beta} e_i,
$$

which leads to

$$
\text{plim}\left(n\frac{\partial Q(\beta)}{\partial \beta}\frac{\partial Q(\beta)}{\partial \beta'}\right) = \mathbb{E}\left[\frac{\partial f_i(\beta)}{\partial \beta}\frac{\partial f_i(\beta')}{\partial \beta}\right] \text{ and } \text{plim}\frac{\partial^2 Q_n(\beta)}{\partial \beta \partial \beta'} = \mathbb{E}\left[\frac{\partial f_i(\beta)}{\partial \beta}\frac{\partial f_i(\beta')}{\partial \beta'}\right].
$$

As a result, the asymptotic covariance of the NLS is

$$
\sigma^2 \bigg(\mathbb{E} \bigg[\frac{\partial f_i(\beta)}{\partial \beta} \frac{\partial f_i(\beta)}{\partial \beta'} \bigg] \bigg)^{-1}.
$$