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Summary of Consistent Estimators

Least Squares: Qn (θ) = 1
n

∑n
i=1
(
yi − ŷi

)2 p→ Q∞ (θ) = E
[
yi − ŷi

]2, where θ̂ ≡ arg min Qn (θ).

Maximum Likelihood: Qn(θ) = 1
n

∑n
i=1 log f (yi, xi, θ)

p→ Q∞(θ) = E
[
log f

(
yi, xi, θ

)]
, where

θ̂ ≡ arg max Qn (θ).

GMM, Minimum Distance Estimators: We have ℓ equations satisfyingE
[
g
(
yi, xi, zi, θ

)]
= 0

such that gn ≡ 1
n

∑n
i=1 gi and

Qn (θ) = gn
′Ŵgn

p→ Q∞ (θ) = E
[
gi
]′WE[gi

]
,

where θ̂ ≡ arg min Qn (θ).

Restricted Estimation

(This section refers to Hansen’s textbook, CH8.)
Given yi = x′iβ + ei and Exiei = 0, we have q linear constraints such that

q×k︷︸︸︷
R′

k×1︷︸︸︷
β =

q×1︷︸︸︷
C.

Note that the constraint is on the population (parameter space).

High-dimensional / regularized estimators

The objective function here might be

min
β̂i

n∑
i=1

(
yi − ŷi

)2
+ λ

k∑
j=1

β̂2
j ,

where the last term λ
∑k

j=1 β̂ j is the Lagrange multiplier corresponding to
∑k

j=1 β̂
2
j≤ C. It is

called ridge regression.
In addition, the objective function can be also in the form

min
β̂i

n∑
i=1

(
yi − ŷi

)2
+ λ

k∑
j=1

|β̂ j|,

where the last term λ
∑k

j=1 |β̂ j| is the Lagrange multiplier corresponding to
∑k

j=1 |β̂ j|≤ C. It is
called LASSO.

1Yu-Chieh thanks their supports to take photo and provide notes.
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Figure 1: Visualization of the ridge regression and LASSO

Lagrange function

First, we define the sum of squared errors (SSE) as

SSE =

n∑
i=1

(
yi − ŷi

)2
=

n∑
i=1

(
yi − x′iβ

)2
=
(
Y − Xβ

)′(Y − Xβ
)

= Y′Y − 2Y′Xβ + β′X′Xβ.

Be careful about the dimension issues of each matrix: Y is n × 1, X is n × k, and β is k × 1.
Combining SSE, restricted and regularized estimations, we can define the Lagrange

function as

L = 1
2
(
Y′Y − 2Y′Xβ + β′X′Xβ

)
+

1×g and g×1︷       ︸︸       ︷
λ′
(
R′β − C

)
,

where the fraction 1
2 in the first term is used to cancel the left coefficient 2 after the derivation,

and the second term is the Lagrangem multiplier.
Hence, the first partial derivative of the Lagrange function w.r.t. β and λ is

∂L
∂β
= −X′Y + X′Xβ̃ + Rλ̃ = 0 (1)

∂L
∂λ
= R′β̃ − C = 0. (2)

By solving the system to obtain β̃ and λ̃, we can use β̃ and λ̃ to denote the solutions to
restricted estimation problem.

To solve the system, we first pre-multiply (1) by R′(X′X)−1:

−R′

β̂︷        ︸︸        ︷
(X′X)−1 X′Y+R′ (X′X)−1 X′Xβ̃ + R′ (X′X)−1 Rλ̃ = 0

⇐⇒ −R′β̂ + R′β̃ + R′ (X′X)−1 Rλ̃ = 0
⇐⇒ R′β̃ = R′β̂ + R′ (X′X)−1 Rλ̃.
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Next, we substitute R′β̂ + R′ (X′X)−1 Rλ̃ for R′β̃ in (2) to solve λ̃:

R′β̃ = C
⇐⇒ R′β̂ + R′ (X′X)−1 Rλ̃ = C

⇐⇒ λ̃ =
(
R′ (X′X)−1 R

)−1(
R′β̂ − C

)
.

Lastly, we substitute
(
R′ (X′X)−1 R

)−1(
R′β̂ − C

)
for λ̃ in (1) to solve β̃:

−X′Y + X′Xβ̃ + R
(
R′ (X′X)−1 R

)−1(
R′β̂ − C

)
= 0

⇐⇒ β̃ = (X′X)−1 X′Y − (X′X)−1 R
(
R′ (X′X)−1 R

)−1(
R′β̂ − C

)
⇐⇒ β̃ = β̂ − R

(
R′ (X′X)−1 R

)−1(
R′β̂ − C

)
.

Note that R is k × q.

Remark.

1. If R′β̂ − C = 0, then β̃ = β̂.

2. R′ (X′X)−1 R is invertible only if rank (R) = q.

□

Consistency

Now we discuss the consistency of the restricted estimation. If it is given R′B = C and
β̂

p→ β0 (true β), then we have

R′β̂ − C
p→ 0 and β̂

p→ β0 =⇒ β̃
p→ β.

Asymptotic normality

√
n
(
β̃ − β

)
=

d→N


0,

≡Q−1
XX︷    ︸︸    ︷(

Exix′i
)−1

≡Ω︷    ︸︸    ︷
E
[
xix′ie

2
i

] ≡Q−1
XX︷    ︸︸    ︷(

Exix′i
)−1

︷      ︸︸      ︷
√

n
(
β̂ − β

)
−

≡M̂
p→M︷                          ︸︸                          ︷

(X′X)−1R
(
R′ (X′X)−1 R

)−1

R′(√n(β̂−β)) since C=R′β︷         ︸︸         ︷
√

n
(
R′β̂ − C

)
d→ N (0,Cov) ,

where Cov is derived by
√

n
(
β̃ − β

) √
n
(
β̃ − β

)′
. Clearly,

Cov =
√

n
(
β̃ − β

) √
n
(
β̃ − β

)′
= n

(
β̂ − β

) (
β̂ − β

)′
− nM̂

(
β̂ − β

) (
β̂ − β

)′
− n
(
β̂ − β

) (
β̂ − β

)′
M̂′ + nM̂

(
β̂ − β

) (
β̂ − β

)′
M̂′

p→ Vβ −MVβ − VβM′ +MVβM′

= Vβ −Q−1
XXR
(
R′Q−1

XXR
)−1

R′Vβ − VβR
(
R′Q−1

XXR
)−1

R′Q−1
XX +Q−1

XXR
(
R′Q−1

XXR
)−1

R′Vβ.
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Can we do better?

The answer is yes. We may set up a minimun distance estimation as

min
β
J (β) = n

(
β̂ − β

)′
Ŵ
(
β̂ − β

)
s.t. Constraints,

where β̂ is an OLS estimator (treated as given). Note that β here is a choive variable, not the
true parameter.

Remark. The Constrained Least Squares (CLS) is a special case where Ŵ = QXX. □

Now, consider the SSE (what is β below. choice variable or true para?)

SSE =

n∑
i=1

(
yi − x′iβ

)2
=

n∑
i=1

(
x′i β̂ + êi − x′iβ

)2
=

n∑
i=1

(
êi + x′i

(
β̂ − β

))2
=

n∑
i=1

ê2
i +
(
β̂ − β

)′  n∑
i=1

xix′i

 (β̂ − β) +
���������*

0

2
n∑

i=1

êixi

(
β̂ − β

)
=

n∑
i=1

ê2
i +
(
β̂ − β

)′  n∑
i=1

xix′i

 (β̂ − β) ,
where we define J (β) as the last term

(
β̂ − β

)′(∑n
i=1 xix′i

) (
β̂ − β

)
with Ŵ =

∑n
i=1 xix′i .

After obtaining J (β), we want to conduct the minimun distance estimation. That is, we
solve the system

min
β
J (β)

s.t. R′β = C (Note that R′β0 = C).

The corresponding Lagrange function is

L =
1
2
J
(
β, Ŵ
)
+ λ′
(
R′β − C

)
=

n
2

(
β̂ − β

)′
Ŵ
(
β̂ − β

)
+ λ′
(
R′β − C

)
,

and FOC w.r.t. β and λ yeilds

∂L
∂β
= −nŴ

(
β̂ − β̃

)
+ Rλ̃ = 0 (3)

∂L
∂λ
= R′β̃ − C = 0. (4)

Extending (3) solves β̃:

β̃ = β̂ − 1
n

Ŵ−1Rλ̃.

Substituting () for (4) gives

R′
(
β̂ − 1

n
Ŵ−1Rλ̃

)
− C = 0 ⇐⇒ λ̃ = n

(
R′Ŵ−1R

)−1(
R′β̂ − C

)
.
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Lastly, we use λ̃ to solve β̃ in (3):

−nŴ
(
β̂ − β̃

)
+ nR

(
R′Ŵ−1R

)−1(
R′β̂ − C

)
= 0

⇐⇒ β̃ = β̂ − Ŵ−1R
(
R′Ŵ−1R

)−1(
R′β̂ − C

)
.

Consistency

Given β̂
p→ β0 (true parameter) and R′β̂ − C

p→ 0, we obtain β̃
p→ β0.

Asymptotic normality

√
n
(
β̃ − β0

)
=
√

n
(
β̂ − β0

)
− Ŵ−1R

(
R′Ŵ−1R

)−1
R′

d→N(0,Vβ)︷       ︸︸       ︷
√

n
(
β̂ − β0

)
d→ N (0,Cov) ,

where Cov is

Cov = Vβ −W−1R
(
R′W−1R

)−1
R′Vβ − VβR

(
R′W−1R

)−1
R′W−1

+W−1R
(
R′W−1R

)−1
R′VβR

(
R′W−1R

)−1
R′W−1.

It shows that the most efficient choice of W is V−1
β . Therefore, the covariance matrix alters to

Cov = Vβ − VβR
(
R′V−1

β R
)−1

R′Vβ.

In general, β̃MD (minimun distance) is more efficient than β̃CLS.

Short summary

CLS: We solve minβ
∑n

i=1

(
yi − x′iβ

)2
s.t. R′β = C =⇒ β̃CLS.

MD Estimation: We solve minβ
(
β̂ − β

)′
Ŵ
(
β̂ − β

)
s.t. R′β = C =⇒ β̃MD.

Note that CLS is a special case where

Ŵ =
1
n

n∑
i=1

xix′i
p→W = E

[
xix′i
]
,

but the efficient weight matrix is

Ŵ =

1n
n∑

i=1

xix′i

−11n
n∑

i=1

xix′i ê
2
i

1n
n∑

i=1

xix′i

−1
p→W = E

[
xix′i
]−1
E
[
xix′ie

2
i

]
E
[
xix′i
]−1
= V−1

β .

Consequently, β̃MD is more efficient than β̃CLS.

Example. Given a regression yi = x′i1β1+x′i2β2+ ei with a constraint β2 = 0, we can show that
the estimator from regression without x2i is identical with the CLS estimator with β2 = 0.

Another example can be found at Page. 269 in Hansen’s textbook. □
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Misspecification

(This section refers to Hansen’s textbook, CH8.13.)
In the case that R′β = C⋆ , C, the MD estimator alters to

β̃MD = β̂ − Ŵ−1R
(
R′Ŵ−1R

)−1(
R′β̂ − C

) p→ β − Ŵ−1R
(
R′Ŵ−1R

)−1(
C⋆ − C

)≡ β⋆n .
The asymptotic normality becomes

√
n
(
β̃MD − β⋆n

)
=
√

n
(
β̂ − β

)
− Ŵ−1R

(
R′Ŵ−1R

)−1√
n
(
R′β̂ − C⋆

)
=
√

n
(
β̂ − β

)
− Ŵ−1R

(
R′Ŵ−1R

)−1√
n
(
R′β̂ − R′β

)
=
(
I − Ŵ−1R

(
R′Ŵ−1R

)−1
R
)√

n
(
β̂ − β

)
d→ N

(
0,Vβ(W)

)
,

where Vβ(W) is the same asymptotic covariance in the case without misspecification. why??????
Another case for the misspecification issue might be in the form of R′βn = C + δ

√
n. In

this case, R′β̂ − C = R′
(
β̂ − βn

)
+ δ
√

n, and the MD estimator is

β̃MD = β̂ − Ŵ−1R
(
R′Ŵ−1R

)−1(
R′β̂ − C

)
= β̂ − Ŵ−1R

(
R′Ŵ−1R

)−1
R′
(
β̂ − βn

)
− Ŵ−1R

(
R′Ŵ−1R

)−1
R′δ
√

n.

The asymptotic normality in this case becomes

√
n
(
β̃MD − βn

)
=

d→N(0,Vβ)︷       ︸︸       ︷
√

n
(
β̂ − βn

)
−Ŵ−1R

(
R′Ŵ−1R

)−1
R′

d→N(0,Vβ)︷       ︸︸       ︷
√

n
(
β̂ − βn

)
−Ŵ−1R

(
R′Ŵ−1R

)−1
R′δ

d→ N
(
0,Vβ(W)

) ≡δ⋆︷                       ︸︸                       ︷
−Ŵ−1R

(
R′Ŵ−1R

)−1
R′δ

= N
(
δ⋆,Vβ(W)

)
.
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