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Summary of Consistent Estimators

Least Squares: Q, (0) = %Zf’zl (yi — yi)z LN Q. (0) = E[y; — 91-]2, where 0 = argmin Q, (0).

Maximum Likelihood: Q,(6) = %Z?:l log f(yi, xi, 6) LR Qw(0) = E[log f (vi, xi, 0)], where
6 = arg max Q, (0).

GMM, Minimum Distance Estimators: We have ¢ equations satisfying E[ < (vi, xi, zi, 0)]=0
such thatg, =1 Y7, ¢;and

Q. (0) = 3’ Wgy 5 Qu (0) = E[gi] WE[g1],
where 0 = arg min Q, (0).
Restricted Estimation

(This section refers to Hansen'’s textbook, CHS8.)
Given y; = x/f + ¢; and Ex;e; = 0, we have g linear constraints such that

axk  kx1 gx1
—_—— /=
R B = C

Note that the constraint is on the population (parameter space).

High-dimensional / regularized estimators

The objective function here might be

n k
min Y wi—9P+AY B
=) =1

where the last term A Zl;:l B; is the Lagrange multiplier corresponding to 21;21 B?S C. Itis
called ridge regression.
In addition, the objective function can be also in the form

n k
Tfkinz (yi— 9 + A Z B,
=1 =1

where the last term A Z’;zl |B;| is the Lagrange multiplier corresponding to Zl;zl Bil< C. Ttis
called LASSO.

Yu-Chieh thanks their supports to take photo and provide notes.
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Figure 1: Visualization of the ridge regression and LASSO

Lagrange function

First, we define the sum of squared errors (SSE) as

i (vi — 9:)°
Y (o )

(Y - XBY(Y - XB)
Y'Y - 2Y'XB + B X' XB.

SSE

Be careful about the dimension issues of each matrix: Yisn x 1, Xisn Xk, and fis k x 1.
Combining SSE, restricted and regularized estimations, we can define the Lagrange

function as
1xg and gx1

1
L= (Y'Y =2V XB+FXXB) + N (R~ C),

where the fraction % in the first term is used to cancel the left coefficient 2 after the derivation,
and the second term is the Lagrangem multiplier.
Hence, the first partial derivative of the Lagrange function w.r.t. f and A is

9L

FTi ~X'Y+X'XB+RA=0 (1)
oL .~
-7 =RB-C=0. (2)

By solving the system to obtain § and A, we can use § and A to denote the solutions to
restricted estimation problem.
To solve the system, we first pre-multiply (1) by R’ (X'X) "
p
——
R (X’X)"' X'Y+R (X’X) ' X’XB+ R (X’X)"'RA=0
& -RP+RB+R (X'X)"'RA=0
& RE=RP+R XX)"'RA
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Next, we substitute R’ + R’ (X’X)™" RA for R’f in (2) to solve A:
Rf=C
& RB+R (XX)'RA=C
— 1=(REX"R) (RE-C).

Lastly, we substitute (R’ x'x)" R)_1<R’ﬁ§ - C) for A in (1) to solve f:
XY+ X'Xf+ R(R (X'X)'R) (RB - c) 0
= f=XX)"XY-XX)"RRXX)'R) ( - Q)
= p=p-RRXX)"'R) (R p-C)

Note that Ris k X g.

Remark.
1. fRf—C=0,thenf = p.

2. R (X’X) R is invertible only if rank (R) = q.

Consistency
Now we discuss the consistency of the restricted estimation. If it is given R'B = C and
B % Bo (true B), then we have

Rp-CHoandpbp = g5

Asymptotic normality

=Qxk - =Qxx
—_——

A O,(Exix:')_l ]E[xixlfel.z] (Exixz,‘)_l

P

=M->M R’( \/ﬁ(ﬁ—ﬁ)) since C=R’f

Vi (§ - p) Vi (B - p) ~(XX)R(R (xX)'R)" Va(RB-C)

5 N(0,Cov),
where Cov is derived by Vn (E - ﬁ) \Vn (5 - 5),. Clearly,

Cov = i(f=p) Vi (f-p) | | |
= n(p=p)(B-p) — bt (- B) (8- B) — (B -§) (B - p) N+ nit (5 - p) (5 - p) ¥1
Ly V= MV — VaM' + MVM’
= V3 - QR(RQER) RV, - ViR(RQiR) R'Q3 + QhR(RQAR) RV
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Can we do better?

The answer is yes. We may set up a minimun distance estimation as

min 7 (8) = n(f~p) W(§-p)

s.t. Constraints,

where f3 is an OLS estimator (treated as given). Note that § here is a choive variable, not the
true parameter.

Remark. The Constrained Least Squares (CLS) is a special case where W = Qxx. O

Now, consider the SSE (what is  below. choice variable or true para?)

n

SSE = Y (vi-xp)

i=1

= Zn: (xif+ e~ xip)

i=1
n

= Y (a+x(@-p)

i=1
0

)& —ﬁ)’(inx;](ﬁ—ﬁ%W

D)

i=1

[l
S
+
—
=

1l
=
+
—
o

where we define 7 (B) as the last term (ﬁ - ﬁ)/(z?zl xix;) (ﬁ - ﬁ) with W = YL, xx.
After obtaining 7 (f), we want to conduct the minimun distance estimation. That is, we
solve the system

min 7 ()
st. R'B=C (NotethatR'S, = C).
The corresponding Lagrange function is
L = %j’(ﬁ, W)+ A'(R'g - C)
= S(B-p)W(B-p)+ 1®B-C),
and FOC w.r.t. § and A yeilds

%:—nW(ﬁA—E)+R7\:0 3)
oL = 3
o= R'p-C=0. (4)
Extending (3) solves f:
p=p- %W-lm

Substituting () for (4) gives
R’(ﬁ - %W—lm) —C=0 = A= n(R’W‘lR)_l(R’ﬁ - Q).
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Lastly, we use A to solve § in (3):
NP A “1/ A
—nW(p - B) + nR(RW'R) (RB-C)=0
— f=p-W'RRW'R) (RB-C).
Consistency
Given 3 5 Bo (true parameter) and R’ — C %5 0, we obtain B LN Bo-

Asymptotic normality

LN (0,V5)
—_—

V(B - o) - WIR(RW'R) R Va( - o)

\/E<ﬁ _ ﬁO) 2 N (0, Cov),

where Cov is

Coo = Vy-W'R(RW'R) R'V;-V;R(RW'R) RW"
+WR(R'W'R) R'V;R(RW'R) RW™.

It shows that the most efficient choice of W is Vﬁ‘l. Therefore, the covariance matrix alters to
ry7-1 -1,

Cov = Vs - ViR(R'V;'R) R'V}.
In general, :gMD (minimun distance) is more efficient than ECLS.
Short summary

2 ~

CLS: We solve ming Zfﬂ(yi - x:ﬁ) st. Rp=C = PBcrs.
MD Estimation: We solve minﬁ(ﬁ - ﬁ),W(ﬁ - ﬁ) st. RB=C = Bmp.

Note that CLS is a special case where

but the efficient weight matrix is

1 .,
W = (% i xl'x:‘] [% Zn: xixfé?][% Zn: Xix;] Lw= IE[xixlf]_l ]E[xix;ef] ]E[xl.xl{]‘1: V;_

i=1 i=1 i=1

Consequently, fyp is more efficient than fcrs.

Example. Given aregression y; = x/, 1 +x),> +¢; with a constraint , = 0, we can show that
the estimator from regression without x,; is identical with the CLS estimator with 8, = 0.
Another example can be found at Page. 269 in Hansen’s textbook. m|
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Misspecification
(This section refers to Hansen'’s textbook, CHS8.13.)
In the case that R’ = C* # C, the MD estimator alters to
Bup = p - WR(RW™'R) (R p-C)5p-WIR(RW- ) (C*-C)= .

The asymptotic normality becomes

Vilfo = 1) = N(f-p) = WOR(RWIR)” V(R - C)
= Vi(p-p) - WOR(RWR) (R - R')

_ (I—W1R(R'w 'R) R)«/E(ﬁ—ﬁ)
4 N(o,vﬁ(vv)),

Another case for the misspecification issue might be in the form of R'S,, = C +64/n. In
this case, R’/ — C = R’(,@ - ﬁn) + 6 y/n, and the MD estimator is

puo = p=WIR(RWR)” (R} ~C)
= p-WIR(RW'R) R’(ﬁ Bs) - WIR(RW'R) 'R V.
The asymptotic normality in this case becomes

SN(0,Vp) SN(0,Vp)
—_—— —_——

VilBuo — ) = V(B B.)-WR(RWR) R Va(f - g.) -W'R(RW'R) RS

=6*

% N(0, V(W) -WR(RWR) R’
= N (6% Vs(W)).
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