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Recap

Bayesian Methods

Given the i.i.d. data y1, · · · , yn, the density/likelihood f (y1, · · · , yn | θ) =
∏n

i=1 f (yi | θ)
(Prob (data | θ)), the prior density g(θ), and the marginal density

∫
θ

f (y1, · · · , yn | θ)g(θ)dθ =
f (y1, · · · , yn) (Prob (data)), we can conduct the posterior density

Prob(θ|data)︷           ︸︸           ︷
f (θ | y1 · · · yn) =

f (y1, · · · , yn | θ)g(θ)
f (y1, · · · , yn)

by Baye’s rule.

Bayesian, Empirical Bayes, and James-Stein Shrinkege

(This part refers to the Ch1, Large-Scale Inference, Bradley Efron. Note that the usage of g() and
f () below is different with above.)

Settings

The setting is described as following. The parameters follow the distribution of density
µ ∼ g( ) (prior), and the data is given by z ∼ f (z | µ) (likelihood), the marginal density is,
therefore,

f (z) =
∫
µ

f (z | µ)g(µ)dµ.

The posterior density is computed by

g(µ | z) =
g(µ) f (z | µ)

f (z)
.

The statistical problem is that we have independent observations from the distribution
z1, · · · , zN, and we want to estimate µ1 · · · , µN.

Assumptions

The prior of parameters follows µ ∼ N (0,A), and the likelihood of observations is
z | µ ∼ N (

µ, 1
)
. Under such assumptions, we can find the marginal distribution follows the

normal distribution with the different variance z ∼ N (0, 1 + A). Moreover, the posterior is

µ | z ∼ N (Bz,B) ,
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where B ≡ A
A+1 . Note that the posterior mean is Bz.

We then estimate the parameters by maximum likelihood estimation (least information)
of µi:

µ̂ML
i = zi

E
[
µ̂ML

i | µi

]
= E

[
zi | µi

]
= µi

Another approach is the Bayesian estimation (having information of prior) of µi, which
calculates the posterior mean:

µ̂Bayes
i = Bzi =

A
A + 1

zi.

Note that the prior here is known.
Additionally, the Empirical Bayes estimation (partial information) of µi is also approach-

able. Note that the prior and A here are unknown. That is,

µ̂EB
i = B̂zi,

when B̂ is an estimation of B.

Loss function

We define the loss function to evaluate the performance of estimations. Define

µ ≡


µ1
...
µN

 and µ̂ ≡


µ̂1
...
µ̂N

 ,
we yeild the loss function

L
(
µ, µ̂

)
= ∥µ̂ − µ∥2 =

N∑
i=1

(
µ̂i − µi

)2.

In addition, we define the risk function as the conditional expectation of loss function:

R
(
µ
)
= E

[
L(µ, µ̂) | µ].

ML approach

The estimated µ under the ML approach is

µ̂ML = z ≡


z1
...

zN

 ,
and the risk function is therefore

E
[
L(µ, µ̂) | µ] = E

 N∑
i=1

(
µ̂i − µi

)2 | µ


= E

 N∑
i=1

(
zi − µi

)2 | µ


= n.

Therefore, the overall Bayes risk is

E
[
E
[
L
(
µ̂, µ

) | µ] | A]
= N.
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Bayesian approach

The estimated µ under the Bayesian approach is

µ̂Bayes = Bz =
A

A + 1
z,

and the risk function is

E
[
L
(
µ, µ̂

) | µ] = E

 N∑
i=1

(
Bzi − µi

)2 | µ


= E

 N∑
i=1

(
B2z2 + µ2

i − 2Bziµi

)
| µ


= E

 n∑
i=1

(
B2z2

i + B2µ2
i − 2B2ziµi + µ

2
i − B2µ2

i − 2Bziµi + 2B2ziµi

)
| µ


= E

 N∑
i=1

(
B2(zi − µi)2 + µ2

i − B2µ2
i − 2Bziµi + 2B2ziµi

)
| µ


= B2N +

(
1 − B2 − 2B + 2B2

) N∑
i=1

µ2
i

= B2N + (1 − B)2
N∑

i=1

µ2
i .

The overall Bayes risk is therefore

E
[
E
[
L
(
µ, µ̂

) | µ] | A]
= E

B2N + (1 − B)2
N∑

i=1

µ2
i | A


=

( A
1 + A

)2

N +
( 1
1 + A

)2

NA

= BN≤ N.

Comparing the overall Bayes risk between ML approach and Bayesian,

N −NB =
1

A + 1
N.

That is, if A = 1, the difference (or the improvement) is 1
2N.

Empirical Bayes

Under this setting, B is unknown, and we need to derive an unbiased estimation of B:

z | µ ∼ N (
µ, IN

)
and µ ∼ N (0,AIN) .

Note that z, µ, and IN here are N × 1,N × 1, and N ×N, respectively. Then, the posterior is

z ∼ N (0, (A + 1)IN) .

We define the auxiliary and variance-like

S =
N∑

i=1

z2
i and S ∼ (A + 1)χ2

N,
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where χ2
N is the Chi-square with the degree of freedom N. Now, we have

E
[N − 2

S

]
=

1
A + 1

= 1 − B.

James-Stein Estimator

We consider a particular empirical bayes estimator called James-Stein estimator, which
is defined as

µ̂JS =
(
1 − N − 2

S

)
z and µ̂JS

i =
(
1 − N − 2

S

)
zi.

We can also evaluate James-Stein estimator by calculating the overall Bayes risk:

E
[
E
[
L
(
µ, µ̂

) | µ] | A]
= E

E
 N∑

i=1

((
1 − N − 2

S

)
zi − µ

)2

| µ
 | A


= N

A
A + 1

+
2

A + 1
.

That is, the order of overall Bayes risk is ML>James-Stein>Bayesian, due to their correspond-
ing size of information.

Theorem. If N ≥ 3, the James-Stein estimmator µ̂JS everywhere (for all µ) dominates the
ML estimator µ̂ML in terms of expected total squared error:

E
[
∥µ̂JS − µ∥2 | µ

]
< E

[
∥µ̂ML − µ∥2 | µ

]
i.e. E

 N∑
i=1

(
µ̂JS

i − µi

)2
| µ

 < E
 N∑

i=1

(
µ̂ML

i − µi

)2
| µ

.
The details of proof is not concluded here, but we mention that one common trick is to
substract auxiliary term

E
[
∥µ̂JS − µ∥2 | µ

]
= E

[
∥µ̂JS − µ̂ + µ̂ − µ∥2 | µ

]
= N − E

[
(N − 2)2

S
| µ

]
,

which yeilds the result of the theorem. □

Remark. For the shrinkege estimator, we have

µ̂S
i = (1 − ξi)zi + ξi

(∑N
i=1 zi

N

)
= zi − ξi

(
zi −

∑N
i=1 zi

N

)
.

□

Regularized Estimation

In the least square, we minimize the objective function

min
n∑

i=1

(
yi − x′iβ

)2
.
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A similar one is the Ridge regression, or called L2 regulization:

min

normal︷          ︸︸          ︷
n∑

i=1

(
yi − x′iβ

)2
+

normal prior︷        ︸︸        ︷
λ

k∑
j=1

(β j−0)2 .

(We try to give it the Bayesian interpretation) The last term can be regarded as the shrinkege
to 0.

Moreover, the LASSO, or called L1 regulization is to

min

normal︷          ︸︸          ︷
n∑

i=1

(
yi − x′iβ

)2
+

double expected Laplace︷       ︸︸       ︷
λ

k∑
j=1

|β j−0| .

Review of the Final

Least Square

For the Least Square, we taught the linear and nonlinear models, and the objective
function is to minimize

min
n∑

i=1

(
yi − ŷi

)2.

For a linear model, almost everything has a closed-form solution. For example,

β̂ =

1
n

n∑
i=1

xix′i

−11
n

n∑
i=1

xiyi

 p→ E
[
xix′i

]−1
E
[
xiyi

]
= β∞,

which yeild the unbiasedness and consistency. Additionally,

√
n
(
β̂ − β0

) d→N
(
0, σ2E

[
xix′i

]−1
)

for E
[
e2

i

]
= σ2 and E

[
eie j

]
= 0.

For a nonlinear model, we may not have a closed-form soultion. Hence, β̂ is defined by
the FOC:

∂Q(θ̂)
∂θ

=
−2
n
∂ f (xi; θ̂)
∂θ′

(
y − f (xi; θ̂)

)
= 0.

If θ̂
p→ θ i.e., consistent, then we can use the Mean Value Theorem

∂Qn

(
θ̂
)

∂θ
=
∂Qn(θ∞)
∂θ

+
∂2Qn(θm)
∂θ∂θ′

(
θ̂ − θ∞

)
.

Since θ̂
p→ θ0, it yeilds θ∞

p→ θ0, and the distribution is

√
n
(
θ̂ − θ

) d→N (0,Cov) .

Note that the correct covariance matrix is required.
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Maximum likelihood

Given the density f (yi | xi, θ), the objective function is

Q∞(θ) =
1
n

n∑
i=1

log f (yi | xi, θ),

and θ̂∞ is defined by ∂Q∞(θ̂)
∂θ = 0. Suppose θ̂ML p→ θ0, we also use the MVT to derive

√
n
(
θ̂ − θ

) d→N (0,Cov) .

GMM and Minimum Distance estimators

There are ℓ moment conditions/equations, and we have

E
[
g(yi, xi, zi, θ)

]
= 0 and gn ≡

1
n

n∑
i=1

g(yi, xi, zi, θ) ≈ 0,

note that ℓ is larger than the number of parameters. The objective here is

Q∞(θ) = gn
′Ŵgn,

where W is ℓ× ℓ. Read Hayashi Ch7.3 to see the asymptotic normality, most efficient weight
matrix, linear GMM (Ch3), and nonlinear GMM (Ch7.3).

Model selection

We have talked about the in-sample and out-sample prediction errors. The exam will
only cover the linear model.

Restricted estimation

Will only ask some simple questions in linear case (linear model and linear restriction).

Hypothesis testing

We have discussed the Wald statistics, the Lagrangian multiplier, and the likelihood ratio.
All of them above converges to χ2(k).

Shrinkege and Bayesian
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