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Why is convexity important?

Convexity:
• Ensures that the local minimum is the global minimum.
• Optimality condition helps capture the minimizer.

Definition (Non-convex)

We say a problem is convex if both the objective function
f and the constraint set X are convex; otherwise, we say it
is a non-convex problem.
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From Convex to Non-convex

Convex:
• Convexity ensures the global minimum.

Non-convex:
• There exists potentially many local minima.
• Finding the global minima among all the local minima
is hard (at least NP-Hard). 1

• Saddle points present.

1See an overview by Danilova et al. (2021).
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Challenge in Online Non-convex Optimization

• Suggala and Netrapalli (2020) prove that no determin-
istic algorithm can achieve o(1) regret in the setting of
online non-convex learning.

• The broadly developed methods such as Follow the
Regularized Leader (FTRL) and Online Mirror Descent
(OMD) cannot perform well in the non-convex setting.
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A Simple Neural Network (NN) Example

Algorithm (Model Training in Classification)

Given training data (x, y) ∈ (X,Y), the activation function,
and the loss function, LEARNER announces a weightwt ∈ W

corresponding to model structure at t-th epoch and re-
ceives a cost f : (X,Y)×W → R.

• Imagine an example where the activation function is
Sigmoid, which is non-convex to w ∈ W.
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Non-convex Applications

Neural Networks:
• Szegedy et al. (2013) specify loss functions for neural
networks are non-convex in general.

• Applications include adversarial training (Generative
Adversarial Networks, GAN), efficient computation of
an equilibrium in non-convex games, etc.
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Reduce Regret Minimization to Optimization

Online-to-offline reduction:
• Kalai and Vempala (2005) introduce Follow the Perturbed
Leader (FTPL) to the regret minimization problem.

• The action set and loss functions for LEARNER is not
assumed to be convex.

• The minimizer is assumed to be computed efficiently.

Some heuristic methods can find approximate global optima reasonably fast. See Drori and Shamir (2020).
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Optimization Oracle

Definition (Value Oracle)

A value oracle is a procedure Val : X × Y → [0, 1] that for
any action pair x ∈ X, y ∈ Y, return the loss value ℓ(x, y) in
time O(1).

Definition (Optimization Oracle)

An optimization oracle is a procedure Opt that receives a
distribution q ∈ ∆(Y) and returns the best performing ac-
tion w.r.t. q in O(1) on any input, i.e.,

∀q ∈ ∆(Y), Opt(q) ∈ argmin
x∈X

Ey∼q[ℓ(x, y)].
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Efficient Computation Assumption

Online with offline:
• Littlestone (1989) shows that efficient online computa-
tion implies efficient offline approximation.

• What Kalai and Vempala (2005) and we discuss here is
how to use efficient offline optimization algorithms for
the online problem.
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Preliminaries

Setting and assumptions:
• X ⊆ Rd is the action set for LEARNER which is bounded
with ℓ∞ diameter of D, i.e., D = supx,y∈X∥x− y∥∞.

• The sequence of loss function ft chosen by REALITY are
L-Lipschitz w.r.t. ℓ1 norm, i.e., |ft(x) − ft(y)| ≤ L∥x− y∥1
for all x, y ∈ X.

• LEARNER aims to choose a sequence of actions {xt}Tt=1

to minimize the regret

RT(x) =
1

T

T∑
t=1

ft(xt)−
1

T inf
x∈X

T∑
t=1

ft(x).
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Recall of Follow the Leader (FTL)

Algorithm (Follow the Leader, FTL)

LEARNER plays a strategy xt ∈ X at t-th round with minimal
loss over past rounds, i.e.,

xt = argmin
x∈X

t−1∑
i=1

fi(x).

10



Convexity Optimization FTPL OFTPL

Follow the Perturbed Leader (FTPL)

Randomness:
• Following FTL, we perturb the cumulative loss by adding
a random perturbation at each round.

Algorithm 1 (FTPL, Agarwal et al. (2019))

Given a parameter η > 0, LEARNER draws an i.i.d. random
vector σt ∼ (exp(η))d and plays a strategy

xt = argmin
x∈X

{ t−1∑
i=1

fi(x)− σ⊤
t x
}

at t-th round.
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Analysis

Complexity:
• Algorithm 1 achieves the regret boundE[RT(x)] ≤ O

(
T−1/3

)
.

• Cesa-Bianchi and Lugosi (2006) show that any algorithm
that is guaranteed to work against an oblivious REAL-
ITY also works for a non-oblivious REALITY. That is, it
suffices to work with a single random vector σ.

12



Convexity Optimization FTPL OFTPL

Strategy as an Oracle

LEARNER’s strategy can be regarded as an offline optimiza-
tion oracle.

Definition (Offline optimization oracle)

An offline optimization oracle is a procedure Off-Opt that
receives a sequence of loss functions f1, · · · , fk and a d-
dimensional vector σ and returns the best performing ac-
tion

x⋆ = argmin
x∈X

{ k∑
i=1

fi(x)− σ⊤x
}

.
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Approximate Optimization Oracle

Definition ((α, β)-approximate optimization oracle)

An optimization oracle is called (α, β)-approximate opti-
mization oracle (Approx-Opt) if it returns x⋆ ∈ X such that

f(x⋆)− σ⊤x⋆ ≤ inf
x∈X

{
f(x)− σ⊤x

}
+ (α + β∥σ∥1).

We denote it with Approx-Optα,β(f− ⟨σ, ·⟩).
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FTPL with Approximate Optimization Oracle

Algorithm 2 (FTPL, Suggala and Netrapalli (2020))

Given a parameter η > 0, LEARNER draws an i.i.d. random
vector σt ∼ (exp(η))d and plays a strategy

xt = Approx-Optα,β

( t−1∑
i=1

fi − ⟨σt, ·⟩
)

at t-th round.
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Performance Analysis

• Suggala and Netrapalli (2020) give the regret bound

E[RT(x)] ≤ O

(
ηd2DL2 + d(βT+ D)

ηT + α + βdL
)

.

• By setting appropriate η =
(√

dT− L
)−1

and when
α = O

(
T−1/2

)
, β = O(T−1), FTPL achieves the O

(
T−1/2

)
regret bound.
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Online Learning with Predictable Sequences

Optimistic case:
• The general online learning setting assumes that the
loss functions are chosen in an adversarial manner by
REALITY.

• However, the loss functions might have some patterns
and could be predictable.

• LEARNER can have prior knowledge about the loss func-
tions (see Rakhlin and Sridharan (2013)).

17



Convexity Optimization FTPL OFTPL

OFTPL with Approximate Optimization Oracle

Algorithm 3 (OFTPL, Suggala and Netrapalli (2020))

Let gt be LEARNER’s guess of ft depending on f1, · · · , ft−1.
Given a parameter η > 0, LEARNER draws an i.i.d. random
vector σt ∼ (exp(η))d and plays a strategy

xt = Approx-Optα,β

( t−1∑
i=1

fi+gt − ⟨σt, ·⟩
)

at t-th round.

Rakhlin and Sridharan (2013) give a thorough discussion
on the choices of gt.
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Performance Analysis

• Suggala and Netrapalli (2020) give the regret bound

E[RT(x)] ≤ O

(
ηd2D

T∑
t=1

L2t
T +

d(βT+ D)
ηT + α + βd

T∑
t=1

Lt
T

)
,

where they assume gt − ft is Lt-Lipschitz w.r.t. ℓ1 norm.
• The regret bound is expected to be smaller when the
guess gt is close to ft.
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Summary

Takeaway:
• Non-convex problems are common and hard to solve,
but a slightly modified FTL can achieve a sublinear re-
gret bound.

• The Exponential Weight Algorithm is another approach
to solve non-convex problems.

Comment:
• Can other distributions improve the regret bound?
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