
Prediction, Learning, and Games B07611039
National Taiwan University, Spring 2023 Yu-Chieh Kuo

Homework 1
Yu-Chieh Kuo B07611039†

†Department of Information Management, National Taiwan University

Problem 1: Regret of Multi-round Game

1.(a)

Suppose you are attending an exam. All questions in this exam are multi choices with
equal or more than one correct answer. You receive 1 point (-1 loss) if your answer is
completely correct, -1 point (1 loss) if your answer is completely incorrect, and a partial
point between 1 and -1 (partial loss between -1 and 1) if your answer is partially correct.
You are permitted to observe the answer for question t after you submit your answer to
question t and suffer a corresponding loss. There exists some possible best answer strategies
to all questions; for example, the exam maker has some preference on the number of the
correct answer, says 3, for each question. Your goal is to minimize the difference between
cumulative loss (score) and the loss with that best answer strategy, which can be formulated
as the online learning problem represented in the homework.

1.(b)

Given a sequence of vector ωt
(
γt
) ∈ [−1, 1]K and the regret defined by

RT B
T∑

t=1

ωt
(
γt
) −min

k∈[K]

T∑
t=1

ωt (k) ,

we consider a linear monotone mapping L : [−1, 1]K → [0, 1]K to modify the vector value
non-negative, specified, L (ωt (k)) = ωt(k)+1

2 ∀k ∈ [K]. We then define a new vector ω′(k) B
L (ωt (k)) ∈ [0, 1]K ∀k ∈ [K]. 1

Given an average regret with ω′t(·)

1
T

RT B
1
T

T∑
t=1

ω′t
(
γt
) −min

k∈[K]

1
T

T∑
t=1

ω′t (k) ,

which can be re-written as

max
k∈[K]

 1
T

T∑
t=1

ω′t
(
γt
) − 1

T

T∑
t=1

ω′t (k)

 ,
1Yu-Chieh thanks to TA Chung-En Tsai’s tremendous help!

Page 1 of 9

Prediction, Learning, and Games: Homework 1 Yu-Chieh Kuo

we define a vector-valued payoff function by

ω′T B
T∑

t=1

(
ω′t
(
γt
) − ω′t (a1) , ω′t

(
γt
) − ω′t (a2) , · · · , ω′t(γt) − ω′t(aK)

)
,

which is the difference between loss at round t and loss for each action in Learner’s action
set [K]. As a side note, ω′T ∈ RK and k ∈ {a1, · · · , aK}. The average vector-valued payoff
function is followingly defined by

ω̄′T B
1
T

T∑
t=1

(
ω′t
(
γt
) − ω′t (a1) , ω′t

(
γt
) − ω′t (a2) , · · · , ω′t(γt) − ω′t(aK)

)
.

Here we notice that the elements of each row of ω̄′T should be non-positive as we can replace
γt by ai, ai ∈ K to obtain a better action. Hence, we then set a set S = {s ∈ RK | −1 ≤ si ≤
0 ∀i = 1, · · · ,K} such that

P

(
lim
T→∞

dist (ω̄T, S) = 0
)
= 1,

which is formulated as a Blackwell’s approachability problem. In addition, RT
T → 0 if the

elements of each row of ω̄′T are non-positive, i.e., RT is no-regret as T→∞.
The algorithm with input ωt

(
γt
)

is also no-regret. Suppose there exists an algorithm A
achieves o(T) when the vectors are in [0, 1]K. The algorithm with vectors in [−1, 1]K also
achieves o(T) since

T∑
t=1

ωt
(
γt
) −min

k∈[K]

T∑
t=1

ωt (k) = 2

Regret of A︷ ︸︸ ︷ T∑
t=1

ω′t
(
γt
) −min

k∈[K]

T∑
t=1

ω′t (k)

 = o(T).

1.(c)

We now check the approachability of set S. Here I use ωt instead of ω′t to denote a
sequence of vectors in [−1, 1]K to ease note. Based on the result in Problem 1(b), both results
in (ωt)t∈N ∈ [−1, 1] and (ωt)t∈N ∈ [0, 1] achieve o(T).

First, S is closed and convex. For all (ωt)t∈N ∈ [0, 1]K, we can always find an action γt ∈ [K]
such that ωtγt is non-positive by definition. Hence, S is response − satis f iable (see Definition
4 in Abernethy et al. (2011)) and approachable (see Theorem 6 in Abernethy et al. (2011)). In
addition, Blackwell’s algorithm specifies Learner randomly announces its action for some
distribution over its action set; that is,∆[K]. Therefore, Blackwell’s condition is satisfied, and
Blackwell’s theorem states that there exists a randomized strategy such that dist (ω̄T, S) ≤ 2R√

T
with ‖s‖ ≤ R ∀s ∈ S. That is,

P

(
lim
T→∞

dist (ω̄T, S) = 0
)
= 1 and RT = o(T) a.s.

(I found another algorithm for this problem, but I am unsure it is an approachability algorithm(?).
I write the algorithm in a more approachability style above, but I still write this algorithm below.)

Page 2 of 9

Prediction, Learning, and Games: Homework 1 Yu-Chieh Kuo

We demonstrate a randomized algorithm2 called Randomized Weighted Majority (or
Hedge). The algorithm was proposed by Freund and Schapire (1997), and Daniel and
Andreas (2010) and Thomas (2018) provided detailed explanations of the algorithm analysis3.

The Randomized Weighted Majority (MWR) algorithm is described as Algorithm 1.

Algorithm 1 The Randomized Weighted Majority Algorithm.
1: Initialize: Set ek,0 = 1 for each k ∈ [K].
2: for each round t = 1, 2, · · · ,T do
3: Define a distribution pt(k) B ei,k∑

k∈[K] ek,t
.

4: Learner chooses γt with the distribution pt(k) among action set [K].
5: Learner suffers a loss ωt

(
γt
)
.

6: for each k ∈ [K] do
7: Set ek,t+1 = ek,t(1 − η)ωt(k)

8: end for
9: end for

Line 4 of Algorithm 1 represents the randomness of the algorithm since Learner chooses
an action from a dynamically updating distribution among all actions in [K]. Based on the
result in Problem 1(b), we can prove the MWR algorithm achieves o(T) with the loss in [0, 1],
which will also guarantee the same result for loss in [−1, 1]. Below I use ωt(·) instead of ω′t(·)
to ease note.

Theorem 1. For the sequence from [0, 1] and the action k ∈ [K], K ∈N,

ΩALG
T ≤ (1 + η)

T∑
t=1

ωt
(
γt
)
+

lnK

η
,

where

ΩALG
T =

T∑
t=1

∑
k∈[K]

pt(k)ωt
(
γt
)

denotes by the expected sum of loss of the algorithm.

Proof. We first define the sum of weight at round t by Wt =
∑

k∈[K] ek,t for all k ∈ [K]. Wt

decreases over time since

Wt+1 =
∑
k∈[K]

ek,t+1 =
∑
k∈[K]

ek,t(1 − η)ωt(k).

Note that (1−η)z = 1−zη for z = {0, 1}, and z 7→ (1−η)z is convex w.r.t. z. Hence, for z ∈ [0, 1],
(1 − η)z ≤ 1 − zη holds, and it gives

Wt+1 ≤
∑
k∈[K]

ek,t(1 − ηωt (k)) =Wt − η
∑
k∈[K]

ek,tωt (k) .

2I initially wrote down this algorithm but found it seemed not to be a desired approachability algorithm.
Please ignore it if it is not. Thank you so much!

3I am surprised that these lectures in the reference were taught more than 10 years ago, but there were no
related theoretical machine learning courses until Prof. Li returned to NTU. I feel the recruiting committee, or
NTU, or academia in Taiwan do not emphasize on the theoretical research in ML, which makes me a little bit
upset and depressed, and I also feel Taiwan is behind the world for this case.

Page 3 of 9

Prediction, Learning, and Games: Homework 1 Yu-Chieh Kuo

Denote by the expected loss of the algorithm in round t ωALG
t = 1

Wt

∑
k∈[K] ek,tωt (k), the

bound for Wt+1 alters to

Wt+1 ≤Wt − ηωALG
t Wt =Wt(1 − ηωALG

t).

As a consequence,

WT+1 ≤W1

T∏
t

(1 − ηωALG
t) = K

T∏
t

(1 − ηωALG
t).

Now we obtain the upper bound of the sum of weight after round t, we would like to obtain
a lower bound in the same terms of the expected loss:

WT+1 ≥ ek,T+1 = ek,1

T∏
t=1

(1 − η)ωt(k) = (1 − η)
∑T

t=1 ωt(k).

Combining the upper and lower bounds and taking the logaritm on both sides gives

T∑
t=1

ωt (k) ln(1 − η) ≤ lnK +

T∑
t=1

(1 − ηωALG
t)

Here we apply an approximation of the logaritm:

−z − z2 ≤ ln(1 − z) ≤ −z.

Thus, the inequality alters to

T∑
t=1

ωt (k) (−η − η2) ≤ lnK − ηΩALG
t ⇐⇒ ΩALG

T ≤ (1 + η)
T∑

t=1

ωt
(
γt
)
+

lnK

η
,

□

Now, setting η =
√

lnK
T yields

ΩALG
T ≤ min

k∈[K]

T∑
t=1

ωt (k) + 2
√

T lnK ⇐⇒

Regret︷ ︸︸ ︷
ΩALG

T −min
k∈[K]

T∑
t=1

ωt (k) ≤ 2
√

T lnK = o(T).

Note that the bound of regret must hold, i.e., with probability 1. Therefore, we show that
there exists a randomized algorithm that achieves o(T) almost surely.

Problem 2: Online Linear Optimization

2.(a)

Suppose there exists γ ∼ ∆([K]) minimizing
∑T

t=1
〈
ωt, γ
〉
, we consider a simple case

γ = αk1 + (1 − α)k2, 0 < α < 1, k1, k2 ∈ [K] W.L.O.G. to represent a mixed strategy. Moreover,
we assume

T∑
t=1

〈
ωt, γ
〉
<

T∑
t=1

〈ωt, k1〉 ≤
T∑

t=1

〈ωt, k2〉 .

Page 4 of 9

Prediction, Learning, and Games: Homework 1 Yu-Chieh Kuo

for convenience. It gives

T∑
t=1

〈
ωt, γ
〉
=

T∑
t=1

〈ωt, αk1 + (1 − αk2)〉

=

T∑
t=1

〈ωt, αk1〉 +
T∑

t=1

〈ωt, (1 − α)k2〉

= α
T∑

t=1

〈ωt, k1〉 + (1 − α)
T∑

t=1

〈ωt, k2〉

≥ α
T∑

t=1

〈ωt, k1〉 + (1 − α)
T∑

t=1

〈ωt, k1〉 .

If the case of equality holds, then αk1 + (1 − α)k2 = k1 ⇐⇒ α = 1, which leads to that γ is a
pure strategy (i.e., one-hot vector in ∆([K])); on the other hand, if the case of equality doesn’t
hold, then αk1 + (1 − α)k2 > k1 implies k1 is the minimizer instead of γ, a contradiction.

2.(b)

Problem 3: Calibration

3.(a)

We first introduce calibration. Suppose Learner announces a forecast to predict the
weather each day. Here we only care about whethet it rains or not. Denote by p the chance
that it rains the next day. Now, from the subsequence of days on which Learner makes
a prediction by announcing p, Learner computes the empirical frequency that it actually
rained the next day and denote by q(p) the empirical frequency. Learner would like to see
q(p) = p (well calibrated, Dawid (1982)) or at least q(p) ≈ p; that is, the prediction is accurate
enough to fit the outcome revealed by Reality. The explanation is modified by Foster (1998)
and Raj (2022).
ε − calibration is a method to measure whether the error between Learner’s prediction

strategy and the outcome from Reality is small enough (less than ε) as the number of forecast
processes increases to a large number (infinity). The formal definition, modified by Foster
(1998), Kakade and Foster (2008), and Mannor and Stoltz (2009), is described as Definition 1.

Definition 1. (ε-calibrated algorithm) We first introduce a calibration. Given a forcast algo-
rithm A generating a forecast pt at each round t, the set of the probability distribution over
outcome X announced by Reality ∆(X), and the Dirac probability distribution δxt on some
outcome xt ∈ X, the goal of Learner calibration, is that for all strategies of Reality,

∀ε > 0, ∀p ∈ ∆(X), lim
T→∞

∥∥∥∥∥∥∥ 1
T

T∑
t=1

1{‖pt−p‖≤ε}
(
pt − δxt

)∥∥∥∥∥∥∥ = 0 a.s.

Next, we extend the calibration to ε-calibration. Given ε > 0 and some finite covering of
∆(X) by N balls B(ε) with radius ε, we denote by q1, · · · , qN the centers of all B(ε) in the
covering, and Learnerwill only choose pt ∈ {q1, · · · , qN}. In addition, denote by Kt the index

Page 5 of 9

Prediction, Learning, and Games: Homework 1 Yu-Chieh Kuo

in {1, · · · ,N} such that pt = qKt . Hence, an ε-calibrated algorithm is said that for all strategies
of Reality,

lim sup
T→∞

N∑
k=1

∥∥∥∥∥∥∥ 1
T

T∑
t=1

1{Kt=k}
(
qk − δxt

)∥∥∥∥∥∥∥ ≤ ε a.s.

3.(b)

Oakes (1985) first proved that a deterministic calibrated forecasting algorithm doesn’t
exists after Dawid (1982) left a conjecture for the existence of self-calibrating distribution.
Foster (1998) gives an easy-to-understand explanation. Suppose Learner uses some deter-
ministic forecasting algorithm A . Consider Reality generates the outcome sequence X by
the following procedure:

xt =

1 if in round t the Learner announces pt ≤ 0.5
0 otherwise.

It shows 1
T

∑T
t=1 1{‖pt−p‖≤ε}

(
pt − δxt

) ≥ 1
4 for all deterministic forecasting algorithms A . In addi-

tion, the case of equality occurs when A generates pt =
1
2 for all t. Hence, 1

T

∑T
t=1 1{‖pt−p‖≤ε}

(
pt − δxt

)
cannot achieve 0 as T→∞, i.e., a calibrated algorithm must be randomized.

3.(c)

To formulate the problem of designing an ε-calibrated forecasting algorithm for Learner
as an approachability problem, we must find some vector-valued utility function u(·, ·) and
an approachable set to be approached.

We first denote by d the dimension of the utility vector and let C ⊂ Rd, the problem for
Learner to solve is to ensure the average of its vector-valued utility converges to the set C
almost surely, i.e.,

P

 limT→∞
inf
c∈C

∥∥∥∥∥∥∥c − 1
T

T∑
t=1

u
(
pt, xt
)∥∥∥∥∥∥∥ = 0

 = 1.

Here we specify the vector-valued utility function u : I × J → Rd, I and J are action sets for
Learner and Reality, as

u(k, a) = (0, · · · , 0, qk − δxt , 0, · · · , 0) ∀k ∈ {1, · · · ,N}, xt ∈ X,
which is a one-hot vector inRXN with non-zero element located in the k-th row and given by
qk − δxt , where X is the cardinality of X, and 0 is the zero element in RX.

Moreover, we define the set C to be approached as below. Re-write XN-dim vectors of
RXN as N-dim vectors with components in RX, i.e.,

y = (y
1
, · · · , y

N
) ∀y ∈ RXN,

where y
k
∈ RX ∀k ∈ {1, · · · ,N}. Then, the approached set C is defined by

C =

y ∈ RXN :
N∑

k=1

∥∥∥∥y
k

∥∥∥∥ ≤ ε .
Note that C is convex and closed.

Page 6 of 9

Prediction, Learning, and Games: Homework 1 Yu-Chieh Kuo

3.(d)

Let p ∈ ∆(X), there exists k ∈ {1, · · · ,N} such that
∥∥∥qk − p

∥∥∥ ≤ ε and thus u(k, p) ∈ C. Hence,
we state

∀p ∈ ∆(X), ∃ ∈ {1, · · · ,N} s.t. u(k, p) ∈ C.

Therefore, C is proven to be approachable.

3.(e)

I read Lin et al. (2020) to survey several algorithms4 applied for solving the min-max
problem and decide to demonstrate their MINIMAX-APPA (Accelerated Proximal Point
Algorithm). This algorithm can be regarded as a combination of INEXACT-APPA and
MAXIMIN-AGA-AGD (Accelerated Gradient Ascent; Accelerated Gradient Descent), and
I describe the AGD and MAXIMIN-AGA-AGD as Algorithm 2 and Algorithm 3 since we
use them in the MINIMAX-APPA. Before illustrating the algorithm, let us clarify additional
notations and the scenario of MINIMAX-APPA. We denote by the diameters of set

Dp = max
p,p′∈∆m−1

∥∥∥p − p′
∥∥∥ and Dq = max

q,q′∈∆n−1

∥∥∥q − q′
∥∥∥ ,

projections onto ∆m−1 and ∆n−1 Pp and Pq, and denote f (p, q) B
〈
p,Aq

〉
for convenience. The

function f is assumed to be ℓ-smooth and µp-strongly-convex-µy-strongly-concave over∆m−1

and ∆n−1. Hence, the MINIMAX-APPA is performed as Algorithm 4.

Algorithm 2 AGD
1: Input: f , initial point p0, smoothness ℓ, strongly-convex module µp, and tolerance ε.
2: Initialize: t← 0, p̃0 ← p0, η← 1

ℓ , and θ←
√
κp−1
√
κp+1 .

3: repeat
4: t← t + 1.
5: pt ← Pp(p̃t−1 − η∇p f (p̃t−1)).
6: p̃t ← pt + θ(pt − pt−1).
7: until

∥∥∥pt − Pp(pt − η∇q f (pt))
∥∥∥2 ≤ ε

2κ2
p(ℓ−µp) .

8: p⋆ ← Pp(pt − η∇p f (pt, ·)).

The MINIMAX-APPA states the total number of gradient evaluations (gradient complexity
or iterations complexity in other pieces of literature) as its performance guarantee. The total
number of gradient evaluations is bounded by

O

√κpκq log3

 (κp + κq)ℓ(D2
p +D2

q)

ε

 ∈ Õ (√κpκq

)
,

where κp =
ℓ
µp

and κq =
ℓ
µq

are condition numbers. Note that Algorithm 4 finds p⋆ in the
for loop and q⋆ after completing the for loop. However, the performance guarantee doesn’t
change if we only require p⋆.

4I learn many learning algorithms and computational complexity measures during the survey. It’s quite
exciting to explore the world node by node, paper by paper.

Page 7 of 9

Prediction, Learning, and Games: Homework 1 Yu-Chieh Kuo

Algorithm 3 MAXIMIN-AGA-AGD
1: Input: f , initial point p0, q0, smoothness ℓ, strongly-convex module µp, µq, and tolerance
ε.

2: Initialize: t← 0, p̃0 ← p0, η← 1
2κpℓ

, κp ← ℓ
µp

, κq ← ℓ
µq

, θ← 4√κpκq−1
4√κpκq+1 , and ε̃← ε

(10κpκq)7 .
3: repeat
4: t← t + 1.
5: p̃t−1 ← AGD(f (·, q̃t−1, p0, ℓ, µp, ε̃)).
6: qt ← Pq(q̃t−1 + η∇q f (p̃t−1, q̃t − 1)).
7: q̃t ← qt + θ(qt − qt−1).
8: pt ← AGD(f (·, qt, p0, ℓ, µp, ε̃)).

9: until
∥∥∥qt − Pq(qt + η∇q f (pt, qt))

∥∥∥2 ≤ ε
(10κpκq)4ℓ .

10: p⋆ ← Pp(pt − 1
2κqℓ
∇p f (pt, qt)).

Algorithm 4 MINIMAX-APPA
1: Input: f , initial point p0, q0, proximity ℓ, strongly-convex parameter µ, tolerance ε, and

iteration T.
2: Initialize: p̃0 ← p0, κx ← ℓ

µp
, θ← 2√κp−1

2√κp+1 , δ← ε
(10κpκq)4 , and ε̃← ε

102κpκq
.

3: for each t = 1, 2, · · · ,T do
4: Denote gt(p, q) B f (p, q) + ℓ

∥∥∥p − p̃t−1

∥∥∥2
.

5: pt ←MAXIMIN-AGA-AGD(gt, p0, q0, 3ℓ, 2ℓ, µq, δ).
6: p̃t ← pt + θ(pt − pt−1).
7: end for
8: q̃← AGD(− f (pT, ·), q0, ℓ, µq, ε̃).
9: qT ← Pq(q̃ + 1

2κpℓ
∇q f (pT, q̃)).

10: p⋆ ← pT, q⋆ ← qT.

References

Abernethy, Jacob, Peter L. Bartlett, and Elad Hazan (2011) “Blackwell Approachability and
No-Regret Learning are Equivalent,” in Proceedings of the 24th Annual Conference on Learning
Theory, 19 of Proceedings of Machine Learning Research, 27–46, 09–11 Jun.

Daniel, Golovin and Krause Andreas (2010) “Lecture notes in CS/CNS/EE 253: Advanced
Topics in Machine Learning,” Janurary.

Dawid, A. P. (1982) “The Well-Calibrated Bayesian,” Journal of the American Statistical Associ-
ation, 77 (379), 605–610.

Foster, Dean P. (1998) “Asymptotic calibration,” Biometrika, 85 (2), 379–390.

Freund, Yoav and Robert E Schapire (1997) “A Decision-Theoretic Generalization of On-Line
Learning and an Application to Boosting,” Journal of Computer and System Sciences, 55 (1),
119–139.

Kakade, Sham M. and Dean P. Foster (2008) “Deterministic calibration and Nash equilib-
rium,” Journal of Computer and System Sciences, 74 (1), 115–130.

Page 8 of 9

Prediction, Learning, and Games: Homework 1 Yu-Chieh Kuo

Lin, Tianyi, Chi Jin, and Michael. I. Jordan (2020) “Near-Optimal Algorithms for Minimax
Optimization,” in Proceedings of the 33rd Annual Conference on Learning Theory, 125 of
Proceedings of Machine Learning Research, 1–42.

Mannor, Shie and Gilles Stoltz (2009) “A Geometric Proof of Calibration.”

Oakes, David (1985) “Self-Calibrating Priors Do Not Exist,” Journal of the American Statistical
Association, 80 (390), 339–339.

Raj, Sangani (2022) “A Comprehensive Guide on Model Calibration: What, When, and
How,” September.

Thomas, Kesselheim (2018) “Lecture notes in Algorithms and Uncertainty,” December.

Page 9 of 9

	Problem 1: Regret of Multi-round Game
	1.(a)
	1.(b)
	1.(c)
	Problem 2: Online Linear Optimization
	2.(a)
	2.(b)
	Problem 3: Calibration
	3.(a)
	3.(b)
	3.(c)
	3.(d)
	3.(e)

