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Problem 1: PAC-Bayes

1.(a)

One of the possible learning problems satisfying the assumptions in the problem state-
ment is the learning axis-aligned rectangles. 1 Consider a simple learning game that aims to
learn an unknown axis-aligned rectangle in the R2 plane. The goal of Learner is to use as
few examples as possible to pick a hypothesis rectangle that approximates the true rectangle.
In this learning problem,

• z1, · · · , zn ∈ Z are the data points in R2 plane.

• H is the hypothesis class that is the collection of all axis-aligned rectangles.

• λ : H × Z→ {0, 1} is the loss function, where λ(h, z) = 1 if the data point (zi)i=1,··· ,n is in
the rectangle and 0 otherwise.

• The risk R : H→ [0, 1] is the expected loss for any possible rectangle h ∈ H.

A visualization can be accessible by Wu (2021), and the original example of the axis-aligned
rectangle was from Kearns and Vazirani (1994).

1.(b)

Given ηφ(h), applying the change of measure inequality yields

Eh∼π̂
[
ηφ(h)

] ≤ D(π̂ ∥ π) + logEh∼π
[
eηφ(h)

]
⇐⇒ Eh∼π̂

[
ηφ(h)

] ≤ D(π̂ ∥ π) + log
1
δ
Ez1,··· ,zn

[
Eh∼π

[
eηφ(h)

]]
(By Markov’s inequality)

⇐⇒ Eh∼π̂
[
φ(h)

] ≤ 1
η

D(π̂ ∥ π) +
1
η

log
Cn(η)
δ

with probability at least 1−δ. Note that for a random variable ξ ≥ 0, the Markov’s inequality
states

P
(
ξ ≥ y

) ≤ E[ξ]
y

⇐⇒ P
(
ξ ≤ E[ξ]

δ

)
≥ 1 − δ;

1The idea refers to Professor Hung-Yi Lee’s ML slide, and this lecture was taught by Professor Pei-Yuan Wu.
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that is,

P
(
logEh∼π

[
eηφ(h)

]
≤ log

1
δ
Ez1,··· ,zn

[
Eh∼π

[
eηφ(h)

]])
≥ 1 − δ.

1.(c)

The hint suggests checking the convexity of δ(p ∥ q) to satisfy Jensen’s inequality. I
separate δ(p ∥ q) into the former and latter parts, which are denoted by

f (p, q) = p log
p
q

and g(p, q) = (1 − p) log
1 − p
1 − q

.

A function is convex if and only if its Hessian matrix is positive semi-definite. The Hessian
matrices of f (p, q) and g(p, q) are

∇2 f (p, q) =
( 1

p − 1
q

−1
q

p
q2

)
and ∇2g(p, q) =

 1
1−p − 1

1−q

− 1
1−q

1−p
(1−q)2

 ,
and their corresponding eigenvalues are

λ f =
(
0 p2+q2

pq2

)
and λg =

(
0 −(p−1)2−(q−1)2

(p−1)(q−1)2

)
,

where λ f and λg are eigenvalue pairs. As the elements of λ f and λg are all non-negative
for any p, q ∈ (0, 1), it yields the positive semi-definition of the Hessian matrix and thus
concludes the convexity of f (p, q) and g(p, q). Hence, δ(p ∥ q) is also convex due to the
additivity of convexity. Lastly, it shows the statement

E[δ(u ∥ v)] ≥ δ(E[u] ∥ E[v])

by Jensen’s inequality.

1.(d)

First, I observe that the statement includes two parts: one with the square root and
another without. It’s always challenging to deal with the problem of combining terms with
and without the square root. Hence, it’s natural to think about separate terms.

Next, we define ∆R(h) ≡ R(h) − R̂n(h) as the difference between the expected loss and the
empirical risk. Applying the change of measure over 2n∆2

R(h) gives

Eh∼π̂
[
2n∆2

R(h)
]

≤ D(π̂ ∥ π) + logEh∼π
[
e2n∆2

R(h)
]

⇐⇒ exp
{
2nEh∼π̂

[
∆2

R(h)
]
−D(π̂ ∥ π)

}
≤ Eh∼π

[
exp

{
2n∆2

R(h)
}]

⇐⇒ ES

[
exp

{
2nEh∼π̂

[
∆2

R(h)
]
−D(π̂ ∥ π)

}]
≤ ES

[
Eh∼π

[
exp

{
2n∆2

R(h)
}]]

⇐⇒ ES

[
exp

{
2nEh∼π̂

[
∆2

R(h)
]
−D(π̂ ∥ π)

}]
≤ Eh∼π

[
ES

[
exp

{
2n∆2

R(h)
}]]
,

where S is some set related to data, and the expectation over S can be exchanged with the
expectation over h ∼ π since π is independent with data.
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In addition, we define V(P,Q) ≡ sup {P(A) −Q(A)} to represent the total variation dis-
tance, where P,Q are two probability distributions on a measurable space (X,Σ), and A ∈ Σ
is a measurable event. 2 Moreover, let p(h) = (R(h), 1 − R(h)) and p̂(h) =

(
R̂n(h), 1 − R̂n(h)

)
be

two probability vectors. 3 Since

∆2
R(h) = R2(h) + R̂2

n(h) − 2R(h)R̂n(h) and
∥∥∥p(h) − p̂(h)

∥∥∥2

1
= 4

(
R2(h) + R̂2

n(h) − 2R(h)R̂n(h)
)
,

it yields 4

ES

[
exp

{
2n∆2

R(h)
}]
= ES

[
exp

{
2n · 1

4

∥∥∥p(h) − p̂(h)
∥∥∥2

1

}]
≤ ES

[
exp

{
n
∥∥∥p(h) − p̂(h)

∥∥∥2

1

}]
≤ ES

[
exp

{
nV

(
p̂(h) − p(h)

)}]
≤ ES

exp

n

√
1
2

D(p̂(h) ∥ p(h))


 (By Pinsker’s inequality)

≤ ES

exp

n

√
1
2
δ(p̂(h) ∥ p(h))




≤ ES
[
exp

{
nδ(p̂(h) ∥ p(h))

}]
≤ 2

√
n ∀ n ≥ 8 (By Theorem 1).

Hence, by Markov’s inequality, we have

ES

[
exp

{
2nEh∼π̂

[
∆2

R(h)
]
−D(π̂ ∥ π)

}]
≤ 2
√

n

⇐⇒ P

(
exp

{
2nEh∼π̂

[
∆2

R(h)
]
−D(π̂ ∥ π)

}
>

2
√

n
δ

)
≤ δ;

that is, with probability at least 1 − δ,

2nEh∼π̂
[
∆2

R(h)
]
≤ D(π̂ ∥ π) + log

2
√

n
δ
.

By Jensen’s inequality, it alters to

(Eh∼π̂[∆R(h)])2 ≤ Eh∼π̂
[
∆2

R(h)
]
≤

D(π̂ ∥ π) + log 2
√

n
δ

2n
,

and finally we prove the statement

Eh∼π̂[R(h)] − Eh∼π̂
[
R̂n(h)

]
≤

√
D(π̂ ∥ π) + log 2

√
n
δ

2n

⇐⇒ Eh∼π̂[R(h)] ≤ Eh∼π̂
[
R̂n(h)

]
+

√
D(π̂ ∥ π) + log 2

√
n
δ

2n
.

2This definition refers to the wikipedia page of Pinsker’s inequality.
3Yu-Chieh thanks to TA Chung-En’s tremendous help!
4Yu-Chieh thanks for the helpful and insightful discussion with my friendly classmates Chao-Hsun Yang

(r10922148) and Cheng-Kang Chou (b09705011)!
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After completing the proof of the statement, I tried to find the original paper for this
inequality. I first searched the keyword parameters free PAC-Bayes bound since this bound
includes no learning rates, but I found no identical result. Alquier (2023) gives a user-friendly
introduction to various PAC-Bayes bounds. The most similar bound I found related to the
problem is McAllesters bound, which was proposed and discussed by McAllester (1998),
Maurer (2004), and McAllester (1999). Conducting the literature review provides me with
more knowledge in this field and an understanding of PAC-Bayes learning. Additionally,
I genuinely admire scholars developing algorithm bounds, which is always so difficult for
me.

Problem 2: Online Convex Optimization

2.(a) Shifting Regret’s definition, algorithms, and applications

I start from Cesa-Bianchi et al. (2012)5 to see the shifting regret for the online convex
optimization problem. I quote the explanation of shifting regret in the abstract of Cesa-
Bianchi et al. (2012) here:

... A much harder criterion to minimize is shifting regret, which is defined as
the difference between the learners cumulative loss and the cumulative loss of
an arbitrary sequence of elements in S. Shifting regret bounds are typically
expressed in terms of the shift, a notion of regularity measuring the length of
the trajectory in S described by the comparison sequence (i.e., the sequence of
elements against which the regret is evaluated).

S denotes a fixed convex set, and then a convex loss function is defined on the same set S.
Cesa-Bianchi et al. (2012) multiply cited Herbster and Warmuth (2001); therefore, I also read
Herbster and Warmuth (2001) to better understand the definition of shifting regret. Herbster
and Warmuth (2001) explain the shifting bounds and the method to obtain such bounds
more comprehensively. The definition of shifting regret is described as Definition 1.

Definition 1. A shifting regret, compared with a classical problem of prediction whose goal
is to minimize the difference between Learner’s cumulative loss and the cumulative loss
of the best constant action in hindsight, is to compare the difference between Learner’s
cumulative loss and the cumulative loss of an arbitrary sequence of actions.

The goal of using the shifting regret is usually to track the best expert in the setting of
prediction with experts. This form of the problem might be first proposed by Herbster and
Warmuth (1998). Although the authors didn’t use the term shifting regret, their objective is
to bound the difference between Learner’s cumulative loss and the loss of the best expert,
which is exact the idea of the shifting regret.

In addition, Zhang et al. (2017) illustrate the shifting more easily:

... In the setting of prediction with expert advice, the dynamic regret is also
referred to as tracking regret or shifting regret [Herbster and Warmuth, 1998,
Cesa-bianchi et al., 2012]. The path-length of the comparator sequence is named
as shift, which is just the number of times the expert changes.

5The authors seemed to change the article’s title. I found another version called A New Look at Shifting
Regret, which is the reason I started my exploration of shifting regret from this article.
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A natural question is how to connect the online algorithms between the common regret
and the shifting regret settings. Herbster and Warmuth (1998) and Herbster and Warmuth
(2001) projected the online algorithm onto a constraint set: see Definition 8 and Definition
9 in Herbster and Warmuth (2001) for the process of the projection, and Theorem 10 in
Herbster and Warmuth (2001) for the shifting regret bound. Following the definitions and
theorems in Herbster and Warmuth (2001), therefore, an online learning algorithm has a
shifting regret guarantee if

1. An online algorithm A is based on a convex function F has an amortized analysis.

2. There exists a convex constraint set Γ over F with related parameters.

3. The shifting regret for A can be bounded in some bounds.

Why Herbster and Warmuth (2001) use a complex dynamic projection skill to show the
shifting bound is to keep mirror descent from choosing points too close to the simplex
boundary for tackling the behavior of the regularizer at the boundary of the simplex.

2.(b)

I give an algorithm proposed by Cesa-Bianchi et al. (2012). The assumptions on xt ∈ X is
xt =

(
x1,t, · · · , xD,t

) ∈ ∆D where D is the total number of experts and ∆D denotes the simplex

∆D =
{
q ∈ [0, 1]n :

∥∥∥q
∥∥∥

1
= 1

}
.

The loss function ft(·) : ∆⊤D × [0, 1]D → R is the inner product of x⊤t and ℓt, where ℓt =(
ℓ1,t, · · · , ℓD,t

) ∈ [0, 1]D can be regarded as a loss over all experts.
Cesa-Bianchi et al. (2012) use the generalized share algorithm to solve this problem. The

algorithm is demonstrated as Algorithm 1.

Algorithm 1 The Generalized Share Algorithm
1: Input: learning rate η > 0 and a coefficient 0 ≤ α ≤ 1.
2: Initialize: x1 ← w1 = ( 1

D , · · · , 1
D ).

3: for each round t = 1, · · · ,T do
4: Learner announces a prediction xt.
5: Learner suffers a loss ft(xt) = x⊤t ℓt.
6: for each j = 1, · · · ,D do

7: w j,t+1 ←
p j,te

−ηℓ j,t∑n
j=1 pi,te

−ηℓi,t ▷ The current pre-weights.

8: x j,t+1 ← α
D + (1 − α)w j,t+1 ▷ Update the share.

9: end for
10: end for

Here authors measure the regularity of the sequence x⊗ = (x1, · · · , xT) in terms of the
quantity

m
(
x⊗

)
=

T∑
t=1

d (xt+1, xt) ,
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where d(a, b) = 1
2 ∥a − b∥1 for a, b ∈ ∆D. For all compared sequences y1, · · · , yT ∈ ∆D with

m
(
y⊗

) ≤ m0, the shifting regret bound of Algorithm 1 is

T∑
t=1

ft(xt)−
T∑

t=1

ft(yt) ≤
√

T
2

(
(m0 + 1) ln D + (T − 1)h

( m0

T − 1

))
∈ O

(√
T (ln D + (T − 1) ln(T − 1))

)
,

whenever η and α are optimally chosen in terms of m0 and T, and

h(x) = −x ln x − (1 − x) ln(1 − x)

denotes the binary entropy for x ∈ [0, 1]. Note that the statement of Problem 2 is equivalent
to set y1 = · · · = yT under the setting of Cesa-Bianchi et al. (2012).

2.(c)

One of the applications that satisfies the assumptions above is to track the best expert, in
which there is a small number of base experts and the goal of the Learner is to predict as
well as the best compound expert. Consider D finance experts who predict the likelihood that
the stock market will rise or fall. Each expert offers its predictions, and the master expert
(Learner) decides the investment strategy among the prediction over all experts based on
their performance and tries to predict as well as the best compound expert. In this setting,
the stock market (Reality) acts based on the previous investment strategy and has a different
action function ft(x) in each trial t. In addition, the master expert (Learner) aggregates all
experts’ suggestions and announces its strategy. Li and Hoi (2013) give a comprehensive
survey, and Gaivoronski and Stella (2000) is an example.

2.(d) Adaptive Regret’s definition, algorithms, and applications

Following the Definition 1.1 in Hazan and Seshadhri (2009), which firstly introduced the
concept of an adaptive regret, I describe an adaptive regret as Definition 2.

Definition 2. The adaptive regret of an online convex optimization algorithm A is defined
as the maximum regret it achieves over any contiguous time interval. That is,

Adaptive − RegretT (A ) B sup
I=[r,s]⊆[T]

 s∑
t=r

ft(xt) −min
x⋆I ∈X

s∑
t=r

ft(x⋆I )

 ,
where X ⊆ RD is a convex domain, xt ∈ X, and x⋆I can vary arbitrarily with any interval I.

The adaptive regret is designed to measure how algorithm A performs compared to the
optimum in hindsight for the same interval over every interval of time. A crucial point of
the adaptive regret is that the comparison in cost is for a different optimum for any interval
within [T], which intuitively captures how well algorithm A tracks the progress of the
dynamic nature since nature may undergo many different changes rather than stay statically
permanently.
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2.(e)

Although I cite Hazan and Seshadhri (2009) to illustrate adaptive regret, I use the same
Algorithm 1 under the setting of Cesa-Bianchi et al. (2012) as an example here to ease note.
The assumptions and notations on X and the loss function ft(·) follow the same setting in
Problem 2.(b). Here I slightly modify the form of adaptive regret Adaptive − RegretT as

Adaptive − Regretτ0
T (A ) B max

[r,s]⊂[1,T], s+1−r≤τ0

 s∑
t=r

ft(xt) − min
y⋆∈∆D

s∑
t=r

ft(y⋆)

 ,
where τ0 ∈ {1, · · · ,T}, to satisfy the setting in Cesa-Bianchi et al. (2012). By Algorithm 1, the
adaptive regret is bounded by

Adaptive − Regretτ0
T (A ) ≤

√
τ0

2

(
τ0h

( 1
τ0

)
+ ln D

)
≤

√
τ0

2
ln (eDτ0) ∈ O

(√
ln D

)
whenever η and α for Algorithm 1 are chosen optimally depending on τ0 and T.

2.(f)

Since the algorithm in Problem 2.(e) is in the same setting and the algorithm in Problem
2.(b), which follows Cesa-Bianchi et al. (2012), the same applications in Problem 2.(c) should
fit the algorithm in Problem 2.(e). Hence, I offer the same application as Problem 2.(c).

One of the applications that satisfies the assumptions above is to track the best expert, in
which there is a small number of base experts and the goal of the Learner is to predict as
well as the best compound expert. Consider D finance experts who predict the likelihood that
the stock market will rise or fall. Each expert offers its predictions, and the master expert
(Learner) decides the investment strategy among the prediction over all experts based on
their performance and tries to predict as well as the best compound expert. In this setting,
the stock market (Reality) acts based on the previous investment strategy and has a different
action function ft(x) in each trial t. In addition, the master expert (Learner) aggregates all
experts’ suggestions and announces its strategy. Li and Hoi (2013) give a comprehensive
survey, and Gaivoronski and Stella (2000) is an example.

2.(g) Dynamic Regret’s definition, algorithms, and applications

Following the definition in Zhang et al. (2020) and Zinkevich (2003), the dynamic regret
is demonstrated as Definition 3.

Definition 3. The dynamic regret is defined as the difference between the cumulative loss of
Learner and that of a sequence of comparators y1, · · · , yT ∈ X:

Dynamic − RegretT(A ) B
T∑

t=1

ft(xt) −
T∑

t=1

ft(yt).
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2.(h)

I provide the algorithm proposed by Zhang et al. (2017). They propose the squared path
length and compare it with the original path length demonstrated in Zinkevich (2003), but
they also slightly modify the dynamic regret into a more restricted version in Definition 4,
defined with respect to a sequence of minimizers of the loss functions due to its greater
mathematical tractability.

Definition 4. The restricted dynamic regret is defined as the difference between the cumula-
tive loss of Learner and that of a sequence of local minimizer:

Dynamic − Regret⋆T (A ) B
T∑

t=1

ft(xt) −
T∑

t=1

min
y∈X

ft(y)

Before demonstrating the algorithm, let us define the notations. The path length of the
comparator sequence is

P⋆T B
T∑

t=2

∥∥∥x⋆t − x⋆t−1

∥∥∥
1
,

where x⋆t ∈ arg minx∈X ft(x). The squared path length of the comparator sequence is

S⋆T B
T∑

t=2

∥∥∥x⋆t − x⋆t−1

∥∥∥2

1
,

which could be much smaller than P⋆T when the local variations are small. Zhang et al.
(2017) assume X is a convex set, and each ft is µ-strongly convex and ℓ-smooth over X and∥∥∥∇ ft(x)

∥∥∥
2
≤ G for all x ∈ X with G denoting the maximum norm of the gradient of ft(x) (also

see Tomaso et al. (2019)); Proj(·) denotes the projection onto the nearest point in X. The
algorithm is described as Algorithm 2.

Algorithm 2 Online Multiple Gradient Descent (OMGD)
1: Input: the step size η > 0 and the number of inner iterations K.
2: Initialize: x1 ← any point in X.
3: for each round t = 1, · · · ,T do
4: Learner announces a prediction xt.
5: Learner suffers a loss ft(xt).
6: Let u1

t ← xt.
7: for each j = 1, · · · ,K do
8: u j+1

t ← Proj
X

(
u j

t − η∇ ft

(
u j

t

))
9: end for

10: xt+1 ← uK+1
t

11: end for

By setting η ≤ 1
ℓ and K =

⌈ 1
η+µ

2µ ln 4
⌉
, Algorithm 2 achieves O

(
min

{
P⋆T , S

⋆
T

})
.
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2.(i)

I sincerely think the track the best expert scenario can be still regarded as an application in
this algorithm. Therefore, I still use the same description as Problem 2.(c).

One of the applications that satisfies the assumptions above is to track the best expert, in
which there is a small number of base experts and the goal of the Learner is to predict as
well as the best compound expert. Consider D finance experts who predict the likelihood that
the stock market will rise or fall. Each expert offers its predictions, and the master expert
(Learner) decides the investment strategy among the prediction over all experts based on
their performance and tries to predict as well as the best compound expert. In this setting,
the stock market (Reality) acts based on the previous investment strategy and has a different
action function ft(x) in each trial t. In addition, the master expert (Learner) aggregates all
experts’ suggestions and announces its strategy. Li and Hoi (2013) give a comprehensive
survey, and Gaivoronski and Stella (2000) is an example.
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